
Red Hat Enterprise Linux 4

Reference Guide

Red Hat Enterprise Linux 4: Reference Guide
Copyright © 2005 Red Hat, Inc.

Red Hat, Inc.

1801 Varsity Drive
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

rhel-rg(EN)-4-Print-RHI (2004-09-30T17:13)
Copyright © 2005 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).
Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright
holder.
Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.
Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.
All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Table of Contents
Introduction.. i

1. Changes To This Manual ... i
2. Architecture-specific Information ... ii
3. Finding Appropriate Documentation .. ii

3.1. Documentation For First-Time Linux Users.. ii
3.2. For the More Experienced .. iv
3.3. Documentation for Linux Gurus ... iv

4. Document Conventions .. iv
5. Activate Your Subscription ... vii

5.1. Provide a Red Hat Login.. vii
5.2. Provide Your Subscription Number .. viii
5.3. Connect Your System.. viii

6. Using the Mouse .. viii
7. Copying and Pasting Text With X.. viii
8. More to Come .. viii

8.1. We Need Feedback! .. ix
I. System Reference.. i

1. Boot Process, Init, and Shutdown ... 1
1.1. The Boot Process ... 1
1.2. A Detailed Look at the Boot Process ... 1
1.3. Running Additional Programs at Boot Time ... 6
1.4. SysV Init Runlevels ... 6
1.5. Shutting Down ... 8

2. The GRUB Boot Loader ... 9
2.1. Boot Loaders and System Architecture ... 9
2.2. GRUB... 9
2.3. Installing GRUB .. 10
2.4. GRUB Terminology ... 11
2.5. GRUB Interfaces .. 13
2.6. GRUB Commands ... 14
2.7. GRUB Menu Configuration File .. 15
2.8. Changing Runlevels at Boot Time ... 17
2.9. Additional Resources ... 17

3. File System Structure .. 19
3.1. Why Share a Common Structure?.. 19
3.2. Overview of File System Hierarchy Standard (FHS) .. 19
3.3. Special File Locations Under Red Hat Enterprise Linux..................................... 24

4. The sysconfig Directory.. 27
4.1. Files in the /etc/sysconfig/ Directory .. 27
4.2. Directories in the /etc/sysconfig/ Directory .. 40
4.3. Additional Resources ... 40

5. The proc File System... 41
5.1. A Virtual File System... 41
5.2. Top-level Files within the proc File System ... 42
5.3. Directories within /proc/... 58
5.4. Using the sysctl Command .. 75
5.5. Additional Resources ... 76

6. Users and Groups.. 77
6.1. User and Group Management Tools .. 77
6.2. Standard Users ... 77
6.3. Standard Groups... 79
6.4. User Private Groups ... 81
6.5. Shadow Passwords ... 82
6.6. Additional Resources ... 83

7. The X Window System ... 85
7.1. The X11R6.8 Release .. 85
7.2. Desktop Environments and Window Managers ... 86
7.3. X Server Configuration Files ... 87
7.4. Fonts... 93
7.5. Runlevels and X ... 96
7.6. Additional Resources ... 97

II. Network Services Reference.. 99
8. Network Interfaces .. 101

8.1. Network Configuration Files.. 101
8.2. Interface Configuration Files ... 102
8.3. Interface Control Scripts .. 108
8.4. Network Function Files.. 110
8.5. Additional Resources ... 110

9. Network File System (NFS).. 111
9.1. How It Works ... 111
9.2. Starting and Stopping NFS .. 114
9.3. NFS Server Configuration.. 115
9.4. NFS Client Configuration Files ... 118
9.5. Securing NFS ... 121
9.6. Additional Resources ... 122

10. Apache HTTP Server .. 125
10.1. Apache HTTP Server 2.0 ... 125
10.2. Migrating Apache HTTP Server 1.3 Configuration Files 126
10.3. After Installation .. 136
10.4. Starting and Stopping httpd... 137
10.5. Configuration Directives in httpd.conf ... 138
10.6. Default Modules... 154
10.7. Adding Modules... 155
10.8. Virtual Hosts .. 155
10.9. Additional Resources ... 157

11. Email ... 159
11.1. Email Protocols .. 159
11.2. Email Program Classifications ... 161
11.3. Mail Transport Agents ... 162
11.4. Mail Delivery Agents ... 171
11.5. Mail User Agents ... 176
11.6. Additional Resources ... 178

12. Berkeley Internet Name Domain (BIND) ... 181
12.1. Introduction to DNS... 181
12.2. /etc/named.conf ... 182
12.3. Zone Files... 189
12.4. Using rndc .. 193
12.5. Advanced Features of BIND.. 196
12.6. Common Mistakes to Avoid .. 197
12.7. Additional Resources ... 197

13. Lightweight Directory Access Protocol (LDAP).. 201
13.1. Why Use LDAP? ... 201
13.2. LDAP Terminology.. 202
13.3. OpenLDAP Daemons and Utilities .. 202
13.4. OpenLDAP Configuration Files... 205
13.5. The /etc/openldap/schema/Directory... 205
13.6. OpenLDAP Setup Overview .. 206
13.7. Configuring a System to Authenticate Using OpenLDAP............................... 207
13.8. Migrating Directories from Earlier Releases ... 209

13.9. Additional Resources ... 210
14. Samba.. 213

14.1. Introduction to Samba.. 213
14.2. Samba Daemons and Related Services .. 213
14.3. Samba Server Types and the smb.conf File... 215
14.4. Samba Security Modes .. 224
14.5. Samba Account Information Databases ... 225
14.6. Samba Network Browsing ... 227
14.7. Samba with CUPS Printing Support .. 229
14.8. Samba Distribution Programs .. 230
14.9. Additional Resources ... 235

15. FTP.. 237
15.1. The File Transport Protocol ... 237
15.2. FTP Servers.. 238
15.3. Files Installed with vsftpd ... 239
15.4. Starting and Stopping vsftpd... 239
15.5. vsftpd Configuration Options.. 240
15.6. Additional Resources ... 248

III. Security Reference.. 251
16. Pluggable Authentication Modules (PAM)... 253

16.1. Advantages of PAM ... 253
16.2. PAM Configuration Files ... 253
16.3. PAM Configuration File Format .. 253
16.4. Sample PAM Configuration Files .. 256
16.5. Creating PAM Modules ... 258
16.6. PAM and Administrative Credential Caching.. 258
16.7. PAM and Device Ownership.. 259
16.8. Additional Resources ... 260

17. TCP Wrappers and xinetd .. 263
17.1. TCP Wrappers.. 263
17.2. TCP Wrappers Configuration Files.. 264
17.3. xinetd... 270
17.4. xinetd Configuration Files... 271
17.5. Additional Resources ... 275

18. iptables ... 279
18.1. Packet Filtering .. 279
18.2. Differences between iptables and ipchains ... 280
18.3. Options Used within iptables Commands ... 281
18.4. Saving iptables Rules .. 287
18.5. iptables Control Scripts ... 288
18.6. ip6tables and IPv6... 290
18.7. Additional Resources ... 290

19. Kerberos .. 291
19.1. What is Kerberos? .. 291
19.2. Kerberos Terminology ... 292
19.3. How Kerberos Works ... 294
19.4. Kerberos and PAM... 295
19.5. Configuring a Kerberos 5 Server ... 295
19.6. Configuring a Kerberos 5 Client .. 297
19.7. Additional Resources ... 297

20. SSH Protocol... 301
20.1. Features of SSH ... 301
20.2. SSH Protocol Versions ... 302
20.3. Event Sequence of an SSH Connection ... 302
20.4. OpenSSH Configuration Files ... 304

20.5. More Than a Secure Shell .. 305
20.6. Requiring SSH for Remote Connections ... 306
20.7. Additional Resources ... 307

21. SELinux .. 309
21.1. Introduction to SELinux .. 309
21.2. Files Related to SELinux ... 309
21.3. Additional Resources ... 312

IV. Appendixes .. 315
A. General Parameters and Modules .. 317

A.1. Specifying Module Parameters ... 317
A.2. SCSI parameters.. 317
A.3. Ethernet Parameters .. 318

Index... 323
Colophon.. 339

Introduction

Welcome to the Red Hat Enterprise Linux Reference Guide.

The Red Hat Enterprise Linux Reference Guide contains useful information about the Red Hat En-
terprise Linux system. From fundamental concepts, such as the structure of the file system, to the
finer points of system security and authentication control, we hope you find this book to be a valuable
resource.

This guide is for you if you want to learn a bit more about how the Red Hat Enterprise Linux system
works. Topics that you can explore within this manual include the following:

• The boot process

• The file system structure

• The X Window System

• Network services

• Security tools

1. Changes To This Manual
This manual has been reorganized for clarity and updated for the latest features of Red Hat Enterprise
Linux 4. Some of the changes include:

A New Samba Chapter

The new Samba chapter explains various Samba daemons and configuration options. Special
thanks to John Terpstra for his hard work in helping to complete this chapter.

A New SELinux Chapter

The new SELinux chapter explains various SELinux files and configuration options. Special
thanks to Karsten Wade for his hard work in helping to complete this chapter.

An Updated proc File System Chapter

The proc file system chapter includes updated information in regards to the 2.6 kernel. Special
thanks to Arjan van de Ven for his hard work in helping to complete this chapter.

An Updated Network File System (NFS) Chapter

The Network File System (NFS) chapter has been revised and reorganized to include NFSv4.

An Updated The X Window System Chapter

The X Window System chapter has been revised to include information on the X11R6.8 release
developed by the X.Org team.

Before reading this guide, you should be familiar with the contents of the Red Hat Enterprise Linux
Installation Guide concerning installation issues, the Red Hat Enterprise Linux Introduction to System
Administration for basic administration concepts, the Red Hat Enterprise Linux System Administration
Guide for general customization instructions, and the Red Hat Enterprise Linux Security Guide for
security related instructions. This guide contains information about topics for advanced users.

HTML, PDF, and RPM versions of the manuals are available on the Red Hat Enterprise Linux Docu-
mentation CD and online at http://www.redhat.com/docs/.

ii Introduction

Note

Although this manual reflects the most current information possible, read the Red Hat Enterprise
Linux Release Notes for information that may not have been available prior to our documenta-
tion being finalized. They can be found on the Red Hat Enterprise Linux CD #1 and online at
http://www.redhat.com/docs/.

2. Architecture-specific Information
Unless otherwise noted, all information contained in this manual apply only to the x86 processor
and processors featuring the Intel® Extended Memory 64 Technology (Intel® EM64T) and AMD64
technologies. For architecture-specific information, refer to the Red Hat Enterprise Linux Installation
Guide for your respective architecture.

3. Finding Appropriate Documentation
You need documentation that is appropriate to your level of Linux expertise. Otherwise, you might
feel overwhelmed or may not find the necessary information to answer any questions. The Red Hat
Enterprise Linux Reference Guide deals with the more technical aspects and options of a Red Hat
Enterprise Linux system. This section helps you decide whether to look in this manual for the infor-
mation you need or to consider other Red Hat Enterprise Linux manuals, including online sources, in
your search.

Three different categories of people use Red Hat Enterprise Linux, and each of these categories require
different sets of documentation and informative sources. To help you figure out where you should start,
determine your own experience level:

New to Linux

This type of user has never used any Linux (or Linux-like) operating system before
or has had only limited exposure to Linux. They may or may not have experience
using other operating systems (such as Windows). Is this you? If so, skip ahead to
Section 3.1 Documentation For First-Time Linux Users.

Some Linux Experience

This type of user has installed and successfully used Linux (but not Red Hat Enterprise Linux)
before or may have equivalent experience with other Linux-like operating systems. Does this
describe you? If so, turn to Section 3.2 For the More Experienced .

Experienced User

This type of user has installed and successfully used Red Hat Enterprise Linux before. If this
describes you, turn to Section 3.3 Documentation for Linux Gurus.

3.1. Documentation For First-Time Linux Users
For someone new to Linux, the amount of information available on any particular subject, such as
printing, starting up the system or partitioning a hard drive, can be overwhelming. It helps to initially
step back and gain a decent base of information centered around how Linux works before tackling
these kinds of advanced issues.

Introduction iii

Your first goal should be to obtain some useful documentation. This cannot be stressed enough. With-
out documentation, you only become frustrated at your inability to get a Red Hat Enterprise Linux
system working the way you want.

You should acquire the following types of Linux documentation:

• A brief history of Linux — Many aspects of Linux are the way they are because of historical prece-
dent. The Linux culture is also based on past events, needs, or requirements. A basic understanding
of the history of Linux helps you figure out how to solve many potential problems before you
actually see them.

• An explanation of how Linux works — While delving into the most arcane aspects of the Linux
kernel is not necessary, it is a good idea to know something about how Linux is put together. This
is particularly important if you have been working with other operating systems, as some of the
assumptions you currently hold about how computers work may not transfer from that operating
system to Linux.

• An introductory command overview (with examples) — This is probably the most important thing
to look for in Linux documentation. The underlying design philosophy for Linux is that it is better
to use many small commands connected together in different ways than it is to have a few large
(and complex) commands that do the whole job themselves. Without examples that illustrate this
approach to doing things, you may find yourself intimidated by the sheer number of commands
available on a Red Hat Enterprise Linux system.

Keep in mind that you do not have to memorize all of the available Linux commands. Different
techniques exist to help you find the specific command you need to accomplish a task. You only
need to know the general way in which Linux functions, what you need to accomplish, and how to
access the tool that gives you the exact instructions you need to execute the command.

The Red Hat Enterprise Linux Installation Guide and the Red Hat Enterprise Linux Step By Step
Guide are excellent references for helping you get a Red Hat Enterprise Linux system successfully
installed and initially configured. The Red Hat Enterprise Linux Introduction to System Administration
is a great place to start for those learning the basics of system administration. Start with these books
and use them to build the base of your knowledge of Red Hat Enterprise Linux. Before long, more
complicated concepts begin to make sense because you already grasp the general ideas.

Beyond reading the Red Hat Enterprise Linux manuals, several other excellent documentation re-
sources are available for little or no cost:

3.1.1. Introduction to Linux Websites

• http://www.redhat.com/ — On the Red Hat website, you find links to the Linux Documentation
Project (LDP), online versions of the Red Hat Enterprise Linux manuals, FAQs (Frequently Asked
Questions), a database which can help you find a Linux Users Group near you, technical information
in the Red Hat Support Knowledge Base, and more.

• http://www.linuxheadquarters.com/ — The Linux Headquarters website features easy to follow,
step-by-step guides for a variety of Linux tasks.

3.1.2. Introduction to Linux Newsgroups
You can participate in newsgroups by watching the discussions of others attempting to solve problems,
or by actively asking or answering questions. Experienced Linux users are known to be extremely
helpful when trying to assist new users with various Linux issues — especially if you are posing
questions in the right venue. If you do not have access to a news reader application, you can access
this information via the Web at http://groups.google.com/. Dozens of Linux-related newsgroups exist,
including the following:

iv Introduction

• linux.help — A great place to get help from fellow Linux users.

• linux.redhat — This newsgroup primarily covers Red Hat Enterprise Linux-specific issues.

• linux.redhat.install — Pose installation questions to this newsgroup or search it to see how others
solved similar problems.

• linux.redhat.misc — Questions or requests for help that do not really fit into traditional categories
go here.

• linux.redhat.rpm — A good place to go if you are having trouble using RPM to accomplish partic-
ular objectives.

3.2. For the More Experienced
If you have used other Linux distributions, you probably already have a basic grasp of the most fre-
quently used commands. You may have installed your own Linux system, and maybe you have even
downloaded and built software you found on the Internet. After installing Linux, however, configura-
tion issues can be very confusing.

The Red Hat Enterprise Linux System Administration Guide is designed to help explain the various
ways a Red Hat Enterprise Linux system can be configured to meet specific objectives. Use this
manual to learn about specific configuration options and how to put them into effect.

When you are installing software that is not covered in the Red Hat Enterprise Linux System
Administration Guide, it is often helpful to see what other people in similar circumstances
have done. HOWTO documents from the Linux Documentation Project, available at
http://www.redhat.com/mirrors/LDP/HOWTO/HOWTO-INDEX/howtos.html, document particular
aspects of Linux, from low-level kernel esoteric changes to using Linux for amateur radio station
work.

If you are concerned with the finer points and specifics of the Red Hat Enterprise Linux system, the
Red Hat Enterprise Linux Reference Guide is a great resource.

If you are concerned about security issues, the Red Hat Enterprise Linux Security Guide is a great
resource — explaining in concise terms best strategies and practices for securing Red Hat Enterprise
Linux.

3.3. Documentation for Linux Gurus
If you are concerned with the finer points and specifics of the Red Hat Enterprise Linux system, the
Red Hat Enterprise Linux Reference Guide is a great resource.

If you are a long-time Red Hat Enterprise Linux user, you probably already know that one of the best
ways to understand a particular program is to read its source code and/or configuration files. A major
advantage of Red Hat Enterprise Linux is the availability of the source code for anyone to read.

Obviously, not everyone is a programmer, so the source code may not be helpful for you. However, if
you have the knowledge and skills necessary to read it, the source code holds all of the answers.

4. Document Conventions
When you read this manual, certain words are represented in different fonts, typefaces, sizes, and
weights. This highlighting is systematic; different words are represented in the same style to indicate
their inclusion in a specific category. The types of words that are represented this way include the
following:

Introduction v

command

Linux commands (and other operating system commands, when used) are represented this way.
This style should indicate to you that you can type the word or phrase on the command line
and press [Enter] to invoke a command. Sometimes a command contains words that would be
displayed in a different style on their own (such as file names). In these cases, they are considered
to be part of the command, so the entire phrase is displayed as a command. For example:

Use the cat testfile command to view the contents of a file, named testfile, in the current
working directory.

file name

File names, directory names, paths, and RPM package names are represented this way. This style
should indicate that a particular file or directory exists by that name on your system. Examples:

The .bashrc file in your home directory contains bash shell definitions and aliases for your own
use.

The /etc/fstab file contains information about different system devices and file systems.

Install the webalizer RPM if you want to use a Web server log file analysis program.

application
This style indicates that the program is an end-user application (as opposed to system software).
For example:

Use Mozilla to browse the Web.

[key]

A key on the keyboard is shown in this style. For example:

To use [Tab] completion, type in a character and then press the [Tab] key. Your terminal displays
the list of files in the directory that start with that letter.

[key]-[combination]

A combination of keystrokes is represented in this way. For example:

The [Ctrl]-[Alt]-[Backspace] key combination exits your graphical session and return you to the
graphical login screen or the console.

text found on a GUI interface
A title, word, or phrase found on a GUI interface screen or window is shown in this style. Text
shown in this style is being used to identify a particular GUI screen or an element on a GUI
screen (such as text associated with a checkbox or field). Example:

Select the Require Password checkbox if you would like your screensaver to require a password
before stopping.

top level of a menu on a GUI screen or window
A word in this style indicates that the word is the top level of a pulldown menu. If you click on
the word on the GUI screen, the rest of the menu should appear. For example:

Under File on a GNOME terminal, the New Tab option allows you to open multiple shell
prompts in the same window.

If you need to type in a sequence of commands from a GUI menu, they are shown like the
following example:

Go to Main Menu Button (on the Panel) => Programming => Emacs to start the Emacs text
editor.

vi Introduction

button on a GUI screen or window
This style indicates that the text can be found on a clickable button on a GUI screen. For example:

Click on the Back button to return to the webpage you last viewed.

computer output

Text in this style indicates text displayed to a shell prompt such as error messages and responses
to commands. For example:

The ls command displays the contents of a directory. For example:
Desktop about.html logs paulwesterberg.png
Mail backupfiles mail reports

The output returned in response to the command (in this case, the contents of the directory) is
shown in this style.

prompt

A prompt, which is a computer’s way of signifying that it is ready for you to input something, is
shown in this style. Examples:

$

#

[stephen@maturin stephen]$

leopard login:

user input
Text that the user has to type, either on the command line, or into a text box on a GUI screen, is
displayed in this style. In the following example, text is displayed in this style:

To boot your system into the text based installation program, you must type in the text com-
mand at the boot: prompt.

replaceable

Text used for examples, which is meant to be replaced with data provided by the user, is displayed
in this style. In the following example, <version-number> is displayed in this style:

The directory for the kernel source is /usr/src/<version-number>/, where
<version-number> is the version of the kernel installed on this system.

Additionally, we use several different strategies to draw your attention to certain pieces of information.
In order of how critical the information is to your system, these items are marked as a note, tip,
important, caution, or warning. For example:

Note

Remember that Linux is case sensitive. In other words, a rose is not a ROSE is not a rOsE.

Tip

The directory /usr/share/doc/ contains additional documentation for packages installed on your
system.

Introduction vii

Important

If you modify the DHCP configuration file, the changes do not take effect until you restart the DHCP
daemon.

Caution

Do not perform routine tasks as root — use a regular user account unless you need to use the root
account for system administration tasks.

Warning

Be careful to remove only the necessary Red Hat Enterprise Linux partitions. Removing other parti-
tions could result in data loss or a corrupted system environment.

5. Activate Your Subscription
Before you can access service and software maintenance information, and the support documenta-
tion included in your subscription, you must activate your subscription by registering with Red Hat.
Registration includes these simple steps:

• Provide a Red Hat login

• Provide a subscription number

• Connect your system

The first time you boot your installation of Red Hat Enterprise Linux, you are prompted to register
with Red Hat using the Setup Agent. If you follow the prompts during the Setup Agent, you can
complete the registration steps and activate your subscription.

If you can not complete registration during the Setup Agent (which requires network access), you
can alternatively complete the Red Hat registration process online at http://www.redhat.com/register/.

5.1. Provide a Red Hat Login
If you do not have an existing Red Hat login, you can create one when prompted during the Setup
Agent or online at:

https://www.redhat.com/apps/activate/newlogin.html

A Red Hat login enables your access to:

• Software updates, errata and maintenance via Red Hat Network

• Red Hat technical support resources, documentation, and Knowledgebase

If you have forgotten your Red Hat login, you can search for your Red Hat login online at:

https://rhn.redhat.com/help/forgot_password.pxt

viii Introduction

5.2. Provide Your Subscription Number
Your subscription number is located in the package that came with your order. If your package did not
include a subscription number, your subscription was activated for you and you can skip this step.

You can provide your subscription number when prompted during the Setup Agent or by visiting
http://www.redhat.com/register/.

5.3. Connect Your System
The Red Hat Network Registration Client helps you connect your system so that you can begin to get
updates and perform systems management. There are three ways to connect:

1. During the Setup Agent — Check the Send hardware information and Send system package
list options when prompted.

2. After the Setup Agent has been completed — From the Main Menu, go to System Tools, then
select Red Hat Network.

3. After the Setup Agent has been completed — Enter the following command from the command
line as the root user:

• /usr/bin/up2date --register

6. Using the Mouse
Red Hat Enterprise Linux is designed to use a three-button mouse. If you have a two-button mouse,
you should have selected three-button emulation during the installation process. If you are using three-
button emulation, pressing both mouse buttons at the same time equates to pressing the missing third
(middle) button.

In this document, if you are instructed to click with the mouse on something, that means click the left
mouse button. If you need to use the middle or right mouse button, that will be explicitly stated. (This
will be reversed if you have configured your mouse to be used by a left handed person.)

The phrase "drag and drop" may be familiar to you. If you are instructed to drag and drop an item
on your GUI desktop, click on something and hold the mouse button down. While continuing to hold
down the mouse button, drag the item by moving the mouse to a new location. When you have reached
the desired location, release the mouse button to drop the item.

7. Copying and Pasting Text With X
Copying and pasting text is easy using your mouse and the X Window System. To copy text, click and
drag your mouse over the text to highlight it. To paste the text somewhere, click the middle mouse
button in the spot where the text should be placed.

8. More to Come
The Red Hat Enterprise Linux Reference Guide is part of Red Hat’s commitment to provide useful
and timely support to Red Hat Enterprise Linux users. Future editions feature expanded information
on changes to system structure and organization, new and powerful security tools, and other resources
to help you extend the power of the Red Hat Enterprise Linux system — and your ability to use it.

Introduction ix

That is where you can help.

8.1. We Need Feedback!
If you find an error in the Red Hat Enterprise Linux Reference Guide, or if you have thought of a
way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla
(http://bugzilla.redhat.com/bugzilla/) against the component rhel-rg.

Be sure to mention the manual’s identifier:

rhel-rg(EN)-4-Print-RHI (2004-09-30T17:13)

If you mention the manual’s identifier, we know exactly which version of the guide you have.

If you have a suggestion for improving the documentation, try to be as specific as possible when de-
scribing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

x Introduction

I. System Reference

To manage the system effectively, it is crucial to know about its components and how they fit together.
This part outlines many important aspects of the system. It covers the boot process, the basic file
system layout, the location of crucial system files and file systems, and the basic concepts behind
users and groups. Additionally, the X Window System is explained in detail.

Table of Contents
1. Boot Process, Init, and Shutdown.. 1
2. The GRUB Boot Loader ... 9
3. File System Structure ... 19
4. The sysconfig Directory .. 27
5. The proc File System.. 41
6. Users and Groups.. 77
7. The X Window System ... 85

Chapter 1.
Boot Process, Init, and Shutdown

An important and powerful aspect of Red Hat Enterprise Linux is the open, user-configurable method
it uses for starting the operating system. Users are free to configure many aspects of the boot pro-
cess, including specifying the programs launched at boot-time. Similarly, system shutdown gracefully
terminates processes in an organized and configurable way, although customization of this process is
rarely required.

Understanding how the boot and shutdown processes work not only allows customization, but also
makes it easier to troubleshoot problems related to starting or shutting down the system.

1.1. The Boot Process
Below are the basic stages of the boot process for an x86 system:

1. The system BIOS checks the system and launches the first stage boot loader on the MBR of the
primary hard disk.

2. The first stage boot loader loads itself into memory and launches the second stage boot loader
from the /boot/ partition.

3. The second stage boot loader loads the kernel into memory, which in turn loads any necessary
modules and mounts the root partition read-only.

4. The kernel transfers control of the boot process to the /sbin/init program.

5. The /sbin/init program loads all services and user-space tools, and mounts all partitions
listed in /etc/fstab.

6. The user is presented with a login screen for the freshly booted Linux system.

Because configuration of the boot process is more common than the customization of the shutdown
process, the remainder of this chapter discusses in detail how the boot process works and how it can
be customized to suite specific needs.

1.2. A Detailed Look at the Boot Process
The beginning of the boot process varies depending on the hardware platform being used. However,
once the kernel is found and loaded by the boot loader, the default boot process is identical across all
architectures. This chapter focuses primarily on the x86 architecture.

1.2.1. The BIOS
When an x86 computer is booted, the processor looks at the end of system memory for the Basic
Input/Output System or BIOS program and runs it. The BIOS controls not only the first step of the
boot process, but also provides the lowest level interface to peripheral devices. For this reason it is
written into read-only, permanent memory and is always available for use.

Other platforms use different programs to perform low-level tasks roughly equivalent to those of the
BIOS on an x86 system. For instance, Itanium-based computers use the Extensible Firmware Interface
(EFI) Shell.

Once loaded, the BIOS tests the system, looks for and checks peripherals, and then locates a valid
device with which to boot the system. Usually, it checks any diskette drives and CD-ROM drives

2 Chapter 1. Boot Process, Init, and Shutdown

present for bootable media, then, failing that, looks to the system’s hard drives. In most cases, the
order of the drives searched while booting is controlled with a setting in the BIOS, and it looks on the
master IDE device on the primary IDE bus. The BIOS then loads into memory whatever program is
residing in the first sector of this device, called the Master Boot Record or MBR. The MBR is only 512
bytes in size and contains machine code instructions for booting the machine, called a boot loader,
along with the partition table. Once the BIOS finds and loads the boot loader program into memory,
it yields control of the boot process to it.

1.2.2. The Boot Loader
This section looks at the default boot loader for the x86 platform, GRUB.
Depending on the system’s architecture, the boot process may differ slightly. Refer to
Section 1.2.2.1 Boot Loaders for Other Architectures for a brief overview of non-x86 boot loaders.
For more information about configuring and using GRUB, see Chapter 2 The GRUB Boot Loader.

A boot loader for the x86 platform is broken into at least two stages. The first stage is a small machine
code binary on the MBR. Its sole job is to locate the second stage boot loader and load the first part
of it into memory.

GRUB has the advantage of being able to read ext2 and ext3 1 partitions and load its configuration file
— /boot/grub/grub.conf — at boot time. Refer to Section 2.7 GRUB Menu Configuration File
for information on how to edit this file.

Tip

If upgrading the kernel using the Red Hat Update Agent, the boot loader configuration file is up-
dated automatically. More information on Red Hat Network can be found online at the following URL:
https://rhn.redhat.com/.

Once the second stage boot loader is in memory, it presents the user with a graphical screen showing
the different operating systems or kernels it has been configured to boot. On this screen a user can
use the arrow keys to choose which operating system or kernel they wish to boot and press [Enter]. If
no key is pressed, the boot loader loads the default selection after a configurable period of time has
passed.

Note

If Symmetric Multi-Processor (SMP) kernel support is installed, more than one option is presented
the first time the system is booted. In this situation GRUB displays Red Hat Enterprise Linux
(<kernel-version>-smp), which is the SMP kernel, and Red Hat Enterprise Linux
(<kernel-version>), which is for single processors.

If any problems occur using the SMP kernel, try selecting the a non-SMP kernel upon rebooting.

Once the second stage boot loader has determined which kernel to boot, it locates the corresponding
kernel binary in the /boot/ directory. The kernel binary is named using the following format —
/boot/vmlinuz-<kernel-version> file (where <kernel-version> corresponds to the ker-
nel version specified in the boot loader’s settings).

1. GRUB reads ext3 file systems as ext2, disregarding the journal file. Refer to the chapter titled The ext3

File System in the Red Hat Enterprise Linux System Administration Guide for more information on the ext3 file

system.

Chapter 1. Boot Process, Init, and Shutdown 3

For instructions on using the boot loader to supply command line arguments to the kernel, refer
to Chapter 2 The GRUB Boot Loader. For information on changing the runlevel at the boot loader
prompt, refer Section 2.8 Changing Runlevels at Boot Time.

The boot loader then places one or more appropriate initramfs images into memory. Next, the kernel
decompresses these images from memory to /boot/, a RAM-based virtual file system, via cpio. The
initramfs is used by the kernel to load drivers and modules necessary to boot the system. This is
particularly important if SCSI hard drives are present or if the systems use the ext3 file system.

Once the kernel and the initramfs image(s) are loaded into memory, the boot loader hands control
of the boot process to the kernel.

For a more detailed overview of the GRUB boot loader, refer to Chapter 2 The GRUB Boot Loader.

1.2.2.1. Boot Loaders for Other Architectures
Once the kernel loads and hands off the boot process to the init command, the same sequence of
events occurs on every architecture. So the main difference between each architecture’s boot process
is in the application used to find and load the kernel.

For example, the Itanium architecture uses the ELILO boot loader, the IBM eServer pSeries architec-
ture uses YABOOT, and the IBM eServer zSeries and IBM S/390 systems use the z/IPL boot loader.

Consult the Red Hat Enterprise Linux Installation Guide specific to these platforms for information
on configuring their boot loaders.

1.2.3. The Kernel
When the kernel is loaded, it immediately initializes and configures the computer’s memory and con-
figures the various hardware attached to the system, including all processors, I/O subsystems, and
storage devices. It then looks for the compressed initramfs image(s) in a predetermined location
in memory, decompresses it directly to /sysroot/, and loads all necessary drivers. Next, it initial-
izes virtual devices related to the file system, such as LVM or software RAID, before completing the
initramfs processes and freeing up all the memory the disk image once occupied.

The kernel then creates a root device, mounts the root partition read-only, and frees any unused mem-
ory.

At this point, the kernel is loaded into memory and operational. However, since there are no user
applications that allow meaningful input to the system, not much can be done with the system.

To set up the user environment, the kernel executes the /sbin/init program.

1.2.4. The /sbin/init Program
The /sbin/init program (also called init) coordinates the rest of the boot process and configures
the environment for the user.

When the init command starts, it becomes the parent or grandparent of all of the processes that
start up automatically on the system. First, it runs the /etc/rc.d/rc.sysinit script, which sets
the environment path, starts swap, checks the file systems, and executes all other steps required
for system initialization. For example, most systems use a clock, so rc.sysinit reads the
/etc/sysconfig/clock configuration file to initialize the hardware clock. Another example is
if there are special serial port processes which must be initialized, rc.sysinit executes the
/etc/rc.serial file.

The init command then runs the /etc/inittab script, which describes how the system should
be set up in each SysV init runlevel. Runlevels are a state, or mode, defined by the services listed in

4 Chapter 1. Boot Process, Init, and Shutdown

the SysV /etc/rc.d/rc<x>.d/ directory, where <x> is the number of the runlevel. For more
information on SysV init runlevels, refer to Section 1.4 SysV Init Runlevels.

Next, the init command sets the source function library, /etc/rc.d/init.d/functions, for the
system, which configures how to start, kill, and determine the PID of a program.

The init program starts all of the background processes by looking in the appropriate rc directory for
the runlevel specified as the default in /etc/inittab. The rc directories are numbered to correspond
to the runlevel they represent. For instance, /etc/rc.d/rc5.d/ is the directory for runlevel 5.

When booting to runlevel 5, the init program looks in the /etc/rc.d/rc5.d/ directory to deter-
mine which processes to start and stop.

Below is an example listing of the /etc/rc.d/rc5.d/ directory:

K05innd -> ../init.d/innd
K05saslauthd -> ../init.d/saslauthd
K10dc_server -> ../init.d/dc_server
K10psacct -> ../init.d/psacct
K10radiusd -> ../init.d/radiusd
K12dc_client -> ../init.d/dc_client
K12FreeWnn -> ../init.d/FreeWnn
K12mailman -> ../init.d/mailman
K12mysqld -> ../init.d/mysqld
K15httpd -> ../init.d/httpd
K20netdump-server -> ../init.d/netdump-server
K20rstatd -> ../init.d/rstatd
K20rusersd -> ../init.d/rusersd
K20rwhod -> ../init.d/rwhod
K24irda -> ../init.d/irda
K25squid -> ../init.d/squid
K28amd -> ../init.d/amd
K30spamassassin -> ../init.d/spamassassin
K34dhcrelay -> ../init.d/dhcrelay
K34yppasswdd -> ../init.d/yppasswdd
K35dhcpd -> ../init.d/dhcpd
K35smb -> ../init.d/smb
K35vncserver -> ../init.d/vncserver
K36lisa -> ../init.d/lisa
K45arpwatch -> ../init.d/arpwatch
K45named -> ../init.d/named
K46radvd -> ../init.d/radvd
K50netdump -> ../init.d/netdump
K50snmpd -> ../init.d/snmpd
K50snmptrapd -> ../init.d/snmptrapd
K50tux -> ../init.d/tux
K50vsftpd -> ../init.d/vsftpd
K54dovecot -> ../init.d/dovecot
K61ldap -> ../init.d/ldap
K65kadmin -> ../init.d/kadmin
K65kprop -> ../init.d/kprop
K65krb524 -> ../init.d/krb524
K65krb5kdc -> ../init.d/krb5kdc
K70aep1000 -> ../init.d/aep1000
K70bcm5820 -> ../init.d/bcm5820
K74ypserv -> ../init.d/ypserv
K74ypxfrd -> ../init.d/ypxfrd
K85mdmpd -> ../init.d/mdmpd
K89netplugd -> ../init.d/netplugd
K99microcode_ctl -> ../init.d/microcode_ctl

Chapter 1. Boot Process, Init, and Shutdown 5

S04readahead_early -> ../init.d/readahead_early
S05kudzu -> ../init.d/kudzu
S06cpuspeed -> ../init.d/cpuspeed
S08ip6tables -> ../init.d/ip6tables
S08iptables -> ../init.d/iptables
S09isdn -> ../init.d/isdn
S10network -> ../init.d/network
S12syslog -> ../init.d/syslog
S13irqbalance -> ../init.d/irqbalance
S13portmap -> ../init.d/portmap
S15mdmonitor -> ../init.d/mdmonitor
S15zebra -> ../init.d/zebra
S16bgpd -> ../init.d/bgpd
S16ospf6d -> ../init.d/ospf6d
S16ospfd -> ../init.d/ospfd
S16ripd -> ../init.d/ripd
S16ripngd -> ../init.d/ripngd
S20random -> ../init.d/random
S24pcmcia -> ../init.d/pcmcia
S25netfs -> ../init.d/netfs
S26apmd -> ../init.d/apmd
S27ypbind -> ../init.d/ypbind
S28autofs -> ../init.d/autofs
S40smartd -> ../init.d/smartd
S44acpid -> ../init.d/acpid
S54hpoj -> ../init.d/hpoj
S55cups -> ../init.d/cups
S55sshd -> ../init.d/sshd
S56rawdevices -> ../init.d/rawdevices
S56xinetd -> ../init.d/xinetd
S58ntpd -> ../init.d/ntpd
S75postgresql -> ../init.d/postgresql
S80sendmail -> ../init.d/sendmail
S85gpm -> ../init.d/gpm
S87iiim -> ../init.d/iiim
S90canna -> ../init.d/canna
S90crond -> ../init.d/crond
S90xfs -> ../init.d/xfs
S95atd -> ../init.d/atd
S96readahead -> ../init.d/readahead
S97messagebus -> ../init.d/messagebus
S97rhnsd -> ../init.d/rhnsd
S99local -> ../rc.local

As illustrated in this listing, none of the scripts that actually start and stop the services are located in
the /etc/rc.d/rc5.d/ directory. Rather, all of the files in /etc/rc.d/rc5.d/ are symbolic links
pointing to scripts located in the /etc/rc.d/init.d/ directory. Symbolic links are used in each of
the rc directories so that the runlevels can be reconfigured by creating, modifying, and deleting the
symbolic links without affecting the actual scripts they reference.

The name of each symbolic link begins with either a K or an S. The K links are processes that are killed
on that runlevel, while those beginning with an S are started.

The init command first stops all of the K symbolic links in the directory by issuing the
/etc/rc.d/init.d/<command> stop command, where <command> is the process to be
killed. It then starts all of the S symbolic links by issuing /etc/rc.d/init.d/<command>

start.

6 Chapter 1. Boot Process, Init, and Shutdown

Tip

After the system is finished booting, it is possible to log in as root and execute these same scripts
to start and stop services. For instance, the command /etc/rc.d/init.d/httpd stop stops the
Apache HTTP Server.

Each of the symbolic links are numbered to dictate start order. The order in which the services are
started or stopped can be altered by changing this number. The lower the number, the earlier it is
started. Symbolic links with the same number are started alphabetically.

Note

One of the last things the init program executes is the /etc/rc.d/rc.local file. This file is useful
for system customization. Refer to Section 1.3 Running Additional Programs at Boot Time for more
information about using the rc.local file.

After the init command has progressed through the appropriate rc directory for the runlevel, the
/etc/inittab script forks an /sbin/mingetty process for each virtual console (login prompt)
allocated to the runlevel. Runlevels 2 through 5 have all six virtual consoles, while runlevel 1 (single
user mode) has one, and runlevels 0 and 6 have none. The /sbin/mingetty process opens communi-
cation pathways to tty devices2, sets their modes, prints the login prompt, accepts the user’s username
and password, and initiates the login process.

In runlevel 5, the /etc/inittab runs a script called /etc/X11/prefdm. The prefdm script ex-
ecutes the preferred X display manager3 — gdm, kdm, or xdm, depending on the contents of the
/etc/sysconfig/desktop file.

Once finished, the system operates on runlevel 5 and displays a login screen.

1.3. Running Additional Programs at Boot Time
The /etc/rc.d/rc.local script is executed by the init command at boot time or when changing
runlevels. Adding commands to the bottom of this script is an easy way to perform necessary tasks
like starting special services or initialize devices without writing complex initialization scripts in the
/etc/rc.d/init.d/ directory and creating symbolic links.

The /etc/rc.serial script is used if serial ports must be setup at boot time. This script runs
setserial commands to configure the system’s serial ports. Refer to the setserial man page
for more information.

1.4. SysV Init Runlevels
The SysV init runlevel system provides a standard process for controlling which programs init
launches or halts when initializing a runlevel. SysV init was chosen because it is easier to use and
more flexible than the traditional BSD-style init process.

The configuration files for SysV init are located in the /etc/rc.d/ directory. Within this directory,
are the rc, rc.local, rc.sysinit, and, optionally, the rc.serial scripts as well as the following
directories:

2. Refer to Section 5.3.11 /proc/tty/ for more information about tty devices.
3. Refer to Section 7.5.2 Runlevel 5 for more information about display managers.

Chapter 1. Boot Process, Init, and Shutdown 7

init.d/
rc0.d/
rc1.d/
rc2.d/
rc3.d/
rc4.d/
rc5.d/
rc6.d/

The init.d/ directory contains the scripts used by the /sbin/init command when controlling
services. Each of the numbered directories represent the six runlevels configured by default under
Red Hat Enterprise Linux.

1.4.1. Runlevels
The idea behind SysV init runlevels revolves around the idea that different systems can be used in
different ways. For example, a server runs more efficiently without the drag on system resources
created by the X Window System. Or there may be times when a system administrator may need
to operate the system at a lower runlevel to perform diagnostic tasks, like fixing disk corruption in
runlevel 1.

The characteristics of a given runlevel determine which services are halted and started by init.
For instance, runlevel 1 (single user mode) halts any network services, while runlevel 3 starts these
services. By assigning specific services to be halted or started on a given runlevel, init can quickly
change the mode of the machine without the user manually stopping and starting services.

The following runlevels are defined by default under Red Hat Enterprise Linux:

• 0 — Halt

• 1 — Single-user text mode

• 2 — Not used (user-definable)

• 3 — Full multi-user text mode

• 4 — Not used (user-definable)

• 5 — Full multi-user graphical mode (with an X-based login screen)

• 6 — Reboot

In general, users operate Red Hat Enterprise Linux at runlevel 3 or runlevel 5 — both full multi-user
modes. Users sometimes customize runlevels 2 and 4 to meet specific needs, since they are not used.

The default runlevel for the system is listed in /etc/inittab. To find out the default runlevel for a
system, look for the line similar to the following near the top of /etc/inittab:

id:5:initdefault:

The default runlevel listed in this example is five, as the number after the first colon indicates. To
change it, edit /etc/inittab as root.

Warning

Be very careful when editing /etc/inittab. Simple typos can cause the system to become un-
bootable. If this happens, either use a boot diskette, enter single-user mode, or enter rescue mode
to boot the computer and repair the file.

8 Chapter 1. Boot Process, Init, and Shutdown

For more information on single-user and rescue mode, refer to the chapter titled Basic System Re-
covery in the Red Hat Enterprise Linux System Administration Guide.

It is possible to change the default runlevel at boot time by modifying the arguments passed by
the boot loader to the kernel. For information on changing the runlevel at boot time, refer to
Section 2.8 Changing Runlevels at Boot Time.

1.4.2. Runlevel Utilities
One of the best ways to configure runlevels is to use an initscript utility. These tools are designed
to simplify the task of maintaining files in the SysV init directory hierarchy and relieves system ad-
ministrators from having to directly manipulate the numerous symbolic links in the subdirectories of
/etc/rc.d/.

Red Hat Enterprise Linux provides three such utilities:

• /sbin/chkconfig — The /sbin/chkconfig utility is a simple command line tool for main-
taining the /etc/rc.d/init.d/ directory hierarchy.

• /sbin/ntsysv — The ncurses-based /sbin/ntsysv utility provides an interactive text-based interface,
which some find easier to use than chkconfig.

• Services Configuration Tool — The graphical Services Configuration Tool
(system-config-services) program is a flexible utility for configuring runlevels.

Refer to the chapter titled Controlling Access to Services in the Red Hat Enterprise Linux System
Administration Guide for more information regarding these tools.

1.5. Shutting Down
To shut down Red Hat Enterprise Linux, the root user may issue the /sbin/shutdown command.
The shutdown man page has a complete list of options, but the two most common uses are:

/sbin/shutdown -h now
/sbin/shutdown -r now

After shutting everything down, the -h option halts the machine, and the -r option reboots.

PAM console users can use the reboot and halt commands to shut down the system
while in runlevels 1 through 5. For more information about PAM console users, refer to
Section 16.7 PAM and Device Ownership.

If the computer does not power itself down, be careful not to turn off the computer until a message
appears indicating that the system is halted.

Failure to wait for this message can mean that not all the hard drive partitions are unmounted, which
can lead to file system corruption.

Chapter 2.
The GRUB Boot Loader

When a computer with Red Hat Enterprise Linux is turned on, the operating system is loaded into
memory by a special program called a boot loader. A boot loader usually exists on the system’s
primary hard drive (or other media device) and has the sole responsibility of loading the Linux kernel
with its required files or (in some cases) other operating systems into memory.

2.1. Boot Loaders and System Architecture
Each architecture capable of running Red Hat Enterprise Linux uses a different boot loader. The
following table lists the boot loaders available for each architecture:

Architecture Boot Loaders

AMD® AMD64 GRUB

IBM® eServer™ iSeries™ OS/400®

IBM® eServer™ pSeries™ YABOOT

IBM® S/390® z/IPL

IBM® eServer™ zSeries® z/IPL

Intel® Itanium™ ELILO

x86 GRUB

Table 2-1. Boot Loaders by Architecture

This chapter discusses commands and configuration options for the GRUB boot loader included with
Red Hat Enterprise Linux for the x86 architecture.

2.2. GRUB
The GNU GRand Unified Boot loader (GRUB) is a program which enables the selection of the in-
stalled operating system or kernel to be loaded at system boot time. It also allows the user to pass
arguments to the kernel.

2.2.1. GRUB and the x86 Boot Process
This section discusses the specific role GRUB plays when booting an x86 system. For a look at the
overall boot process, refer to Section 1.2 A Detailed Look at the Boot Process.

GRUB loads itself into memory in the following stages:

1. The Stage 1 or primary boot loader is read into memory by the BIOS from the MBR1. The
primary boot loader exists on less than 512 bytes of disk space within the MBR and is capable
of loading either the Stage 1.5 or Stage 2 boot loader.

1. For more on the system BIOS and the MBR, refer to Section 1.2.1 The BIOS.

10 Chapter 2. The GRUB Boot Loader

2. The Stage 1.5 boot loader is read into memory by the Stage 1 boot loader, if necessary. Some
hardware requires an intermediate step to get to the Stage 2 boot loader. This is sometimes true
when the /boot/ partition is above the 1024 cylinder head of the hard drive or when using LBA
mode. The Stage 1.5 boot loader is found either on the /boot/ partition or on a small part of
the MBR and the /boot/ partition.

3. The Stage 2 or secondary boot loader is read into memory. The secondary boot loader displays
the GRUB menu and command environment. This interface allows the user to select which
kernel or operating system to boot, pass arguments to the kernel, or look at system parameters.

4. The secondary boot loader reads the operating system or kernel as well as the contents of
/boot/sysroot/ into memory. Once GRUB determines which operating system or kernel to
start, it loads it into memory and transfers control of the machine to that operating system.

The method used to boot Red Hat Enterprise Linux is called direct loading because the boot loader
loads the operating system directly. There is no intermediary between the boot loader and the kernel.

The boot process used by other operating systems may differ. For example, the Microsoft® Windows®
operating system, as well as other operating systems, are loaded using chain loading. Under this
method, the MBR points to the first sector of the partition holding the operating system, where it finds
the files necessary to actually boot that operating system.

GRUB supports both direct and chain loading boot methods, allowing it to boot almost any operating
system.

Warning

During installation, Microsoft’s DOS and Windows installation programs completely overwrite the
MBR, destroying any existing boot loaders. If creating a dual-boot system, it is best to install the
Microsoft operating system first.

2.2.2. Features of GRUB
GRUB contains several features that make it preferable to other boot loaders available for the x86
architecture. Below is a partial list of some of the more important features:

• GRUB provides a true command-based, pre-OS environment on x86 machines. This feature af-
fords the user maximum flexibility in loading operating systems with specified options or gathering
information about the system. For years, many non-x86 architectures have employed pre-OS envi-
ronments that allow system booting from a command line.

• GRUB supports Logical Block Addressing (LBA) mode. LBA places the addressing conversion used
to find files in the hard drive’s firmware, and is used on many IDE and all SCSI hard devices. Before
LBA, boot loaders could encounter the 1024-cylinder BIOS limitation, where the BIOS could not
find a file after the 1024 cylinder head of the disk. LBA support allows GRUB to boot operating
systems from partitions beyond the 1024-cylinder limit, so long as the system BIOS supports LBA
mode. Most modern BIOS revisions support LBA mode.

• GRUB can read ext2 partitions. This functionality allows GRUB to access its configuration file,
/boot/grub/grub.conf, every time the system boots, eliminating the need for the user to write
a new version of the first stage boot loader to the MBR when configuration changes are made.
The only time a user needs to reinstall GRUB on the MBR is if the physical location of the
/boot/ partition is moved on the disk. For details on installing GRUB to the MBR, refer to
Section 2.3 Installing GRUB.

Chapter 2. The GRUB Boot Loader 11

2.3. Installing GRUB
If GRUB was not installed during the installation process, it can be installed afterward. Once installed,
it automatically becomes the default boot loader.

Before installing GRUB, make sure to use the latest GRUB package available or use the GRUB
package from the installation CD-ROMs. For instructions on installing packages, refer to the chapter
titled Package Management with RPM in the Red Hat Enterprise Linux System Administration Guide.

Once the GRUB package is installed, open a root shell prompt and run the command
/sbin/grub-install <location>, where <location> is the location that the GRUB Stage
1 boot loader should be installed. For example, the following command installs GRUB to the MBR
of the master IDE device on the primary IDE bus:

/sbin/grub-install /dev/hda

The next time the system boots, the GRUB graphical boot loader menu appears before the kernel loads
into memory.

Important

If GRUB is installed on a RAID 1 array, the system may become unbootable in the event of disk
failure. An unsupported workaround is provided online at the following URL:

http://www.dur.ac.uk/a.d.stribblehill/mirrored_grub.html

2.4. GRUB Terminology
One of the most important things to understand before using GRUB is how the program refers to de-
vices, such as hard drives and partitions. This information is particularly important when configuring
GRUB to boot multiple operating systems.

2.4.1. Device Names
When referring to a specific device with GRUB, do so using the following format (note that the
parentheses and comma are very important syntactically):

(<type-of-device><bios-device-number>,<partition-number>)

The <type-of-device> specifies the type of device from which GRUB boots. The two most
common options are hd for a hard disk or fd for a 3.5 diskette. A lesser used device type is also
available called nd for a network disk. Instructions on configuring GRUB to boot over the network
are available online at http://www.gnu.org/software/grub/manual/.

The <bios-device-number> is the BIOS device number. The primary IDE hard drive is num-
bered 0 and a secondary IDE hard drive is numbered 1. This syntax is roughly equivalent to that used
for devices by the kernel. For example, the a in hda for the kernel is analogous to the 0 in hd0 for
GRUB, the b in hdb is analogous to the 1 in hd1, and so on.

The <partition-number> specifies the number of a partition on a device. Like the
<bios-device-number>, most types of partitions are numbered starting at 0. However, BSD
partitions are specified using letters, with a corresponding to 0, b corresponding to 1, and so on.

12 Chapter 2. The GRUB Boot Loader

Tip

The numbering system for devices under GRUB always begins with 0, not 1. Failing to make this
distinction is one of the most common mistakes made by new users.

To give an example, if a system has more than one hard drive, GRUB refers to the first hard drive
as (hd0) and the second as (hd1). Likewise, GRUB refers to the first partition on the first drive as
(hd0,0) and the third partition on the second hard drive as (hd1,2).

In general the following rules apply when naming devices and partitions under GRUB:

• It does not matter if system hard drives are IDE or SCSI, all hard drives begin with the letters hd.
The letters fd are used to specify 3.5 diskettes.

• To specify an entire device without respect to partitions, leave off the comma and the partition
number. This is important when telling GRUB to configure the MBR for a particular disk. For
example, (hd0) specifies the MBR on the first device and (hd3) specifies the MBR on the fourth
device.

• If a system has multiple drive devices, it is very important to know how the drive boot order is set
in the BIOS. This is a simple task if a system has only IDE or SCSI drives, but if there is a mix of
devices, it becomes critical that the type of drive with the boot partition be accessed first.

2.4.2. File Names and Blocklists
When typing commands to GRUB that reference a file, such as a menu list, it is necessary to specify
an absolute file path immediately after the device and partition numbers.

The following illustrates the structure of such a command:

(<device-type><device-number>,<partition-number>)</path/to/file>

In this example, replace <device-type> with hd, fd, or nd. Replace <device-number>

with the integer for the device. Replace </path/to/file> with an absolute path relative to the
top-level of the device.

It is also possible to specify files to GRUB that do not actually appear in the file system, such as a
chain loader that appears in the first few blocks of a partition. To load such files, provide a blocklist
that specifies block by block where the file is located in the partition. Since a file is often comprised
of several different sets of blocks, blocklists use a special syntax. Each block containing the file is
specified by an offset number of blocks, followed by the number of blocks from that offset point.
Block offsets are listed sequentially in a comma-delimited list.

The following is a sample blocklist:

0+50,100+25,200+1

This sample blocklist specifies a file that starts at the first block on the partition and uses blocks 0
through 49, 99 through 124, and 199.

Knowing how to write blocklists is useful when using GRUB to load operating systems which require
chain loading. It is possible to leave off the offset number of blocks if starting at block 0. As an
example, the chain loading file in the first partition of the first hard drive would have the following
name:

(hd0,0)+1

The following shows the chainloader command with a similar blocklist designation at the GRUB
command line after setting the correct device and partition as root:

Chapter 2. The GRUB Boot Loader 13

chainloader +1

2.4.3. The Root File System and GRUB
The use of the term root file system has a different meaning in regard to GRUB. It is important to
remember that GRUB’s root file system has nothing to do with the Linux root file system.

The GRUB root file system is the top level of the specified device. For example, the image file
(hd0,0)/grub/splash.xpm.gz is located within the /grub/ directory at the top-level (or root)
of the (hd0,0) partition (which is actually the /boot/ partition for the system).

Next, the kernel command is executed with the location of the kernel file as an option. Once the
Linux kernel boots, it sets up the root file system that Linux users are familiar with. The original
GRUB root file system and its mounts are forgotten; they only existed to boot the kernel file.

Refer to the root and kernel commands in Section 2.6 GRUB Commands for more information.

2.5. GRUB Interfaces
GRUB features three interfaces which provide different levels of functionality. Each of these interfaces
allows users to boot the Linux kernel or another operating system.

The interfaces are as follows:

Note

The following GRUB interfaces can only be accessed by pressing any key within the three seconds
of the GRUB menu bypass screen.

Menu Interface

This is the default interface shown when GRUB is configured by the installation program. A
menu of operating systems or preconfigured kernels are displayed as a list, ordered by name. Use
the arrow keys to select an option other than the default selection and press the [Enter] key to
boot it. Alternatively, a timeout period is set, after which GRUB loads the default option.

Press the [e] key to enter the entry editor interface or the [c] key to load a command line interface.

Refer to Section 2.7 GRUB Menu Configuration File for more information on configuring this
interface.

Menu Entry Editor Interface

To access the menu entry editor, press the [e] key from the boot loader menu. The GRUB com-
mands for that entry are displayed here, and users may alter these command lines before booting
the operating system by adding a command line ([o] inserts a new line after the current line and
[O] inserts a new line before it), editing one ([e]), or deleting one ([d]).

After all changes are made, the [b] key executes the commands and boots the operating system.
The [Esc] key discards any changes and reloads the standard menu interface. The [c] key loads
the command line interface.

14 Chapter 2. The GRUB Boot Loader

Tip

For information about changing runlevels using the GRUB menu entry editor, refer to
Section 2.8 Changing Runlevels at Boot Time.

Command Line Interface

The command line interface is the most basic GRUB interface, but it is also the one that grants
the most control. The command line makes it possible to type any relevant GRUB commands
followed by the [Enter] key to execute them. This interface features some advanced shell-like
features, including [Tab] key completion, based on context, and [Ctrl] key combinations when
typing commands, such as [Ctrl]-[a] to move to the beginning of a line and [Ctrl]-[e] to move to
the end of a line. In addition, the arrow, [Home], [End], and [Delete] keys work as they do in the
bash shell.

Refer to Section 2.6 GRUB Commands for a list of common commands.

2.5.1. Interfaces Load Order
When GRUB loads its second stage boot loader, it first searches for its configuration file. Once found,
the menu interface bypass screen is displayed. If a key is pressed within three seconds, GRUB builds
a menu list and displays the menu interface. If no key is pressed, the default kernel entry in the GRUB
menu is used.

If the configuration file cannot be found, or if the configuration file is unreadable, GRUB loads the
command line interface, allowing the user to type commands to complete the boot process.

If the configuration file is not valid, GRUB prints out the error and asks for input. This helps the user
see precisely where the problem occurred. Pressing any key reloads the menu interface, where it is
then possible to edit the menu option and correct the problem based on the error reported by GRUB.
If the correction fails, GRUB reports an error and reloads the menu interface.

2.6. GRUB Commands
GRUB allows a number of useful commands in its command line interface. Some of the commands
accept options after their name; these options should be separated from the command and other options
on that line by space characters.

The following is a list of useful commands:

• boot — Boots the operating system or chain loader that was last loaded.

• chainloader </path/to/file> — Loads the specified file as a chain loader. If the file is
located on the first sector of the specified partition, use the blocklist notation, +1, instead of the file
name.

The following is an example chainloader command:
chainloader +1

• displaymem — Displays the current use of memory, based on information from the BIOS. This is
useful to determine how much RAM a system has prior to booting it.

• initrd </path/to/initrd> — Enables users to specify an initial RAM disk to use when
booting. An initrd is necessary when the kernel needs certain modules in order to boot properly,
such as when the root partition is formatted with the ext3 file system.

The following is an example initrd command:

Chapter 2. The GRUB Boot Loader 15

initrd /initrd-2.6.8-1.523.img

• install <stage-1> <install-disk> <stage-2> p config-file — Installs GRUB
to the system MBR.

• <stage-1> — Signifies a device, partition, and file where the first boot loader image can be
found, such as (hd0,0)/grub/stage1.

• <install-disk> — Specifies the disk where the stage 1 boot loader should be installed, such
as (hd0).

• <stage-2> — Passes the stage 2 boot loader location to the stage 1 boot loader, such as
(hd0,0)/grub/stage2.

• p <config-file> — This option tells the install command to look for the menu configu-
ration file specified by <config-file>, such as (hd0,0)/grub/grub.conf.

Warning

The install command overwrites any information already located on the MBR.

• kernel </path/to/kernel> <option-1> <option-N> ... — Specifies the kernel file to
load when booting the operating system. Replace </path/to/kernel> with an absolute path
from the partition specified by the root command. Replace <option-1> with options for the
Linux kernel, such as root=/dev/hda5 to specify the device on which the root partition for the
system is located. Multiple options can be passed to the kernel in a space separated list.

The following is an example kernel command:
kernel /vmlinuz-2.4.21 root=/dev/hda5

The option in the previous example specifies that the root file system for Linux is located on the
hda5 partition.

• root (<device-type><device-number>,<partition>)— Configures the root partition
for GRUB, such as (hd0,0), and mounts the partition.

The following is an example root command:
root (hd0,0)

• rootnoverify (<device-type><device-number>,<partition>) — Configures the
root partition for GRUB, just like the root command, but does not mount the partition.

Other commands are also available; type help --all for a full list of commands. For
a description of all GRUB commands, refer to the documentation available online at
http://www.gnu.org/software/grub/manual/.

2.7. GRUB Menu Configuration File
The configuration file (/boot/grub/grub.conf), which is used to create the list of operating sys-
tems to boot in GRUB’s menu interface, essentially allows the user to select a pre-set group of com-
mands to execute. The commands given in Section 2.6 GRUB Commands can be used, as well as some
special commands that are only available in the configuration file.

2.7.1. Configuration File Structure
The GRUB menu interface configuration file is /boot/grub/grub.conf. The commands to set the
global preferences for the menu interface are placed at the top of the file, followed by stanzas for each
operating kernel or operating system listed in the menu.

16 Chapter 2. The GRUB Boot Loader

The following is a very basic GRUB menu configuration file designed to boot either Red Hat Enter-
prise Linux or Microsoft Windows 2000:

default=0
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux AS (2.6.8-1.523)

root (hd0,0)
kernel /vmlinuz-2.6.8-1.523 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
initrd /initrd-2.6.8-1.523.img

section to load Windows
title Windows

rootnoverify (hd0,0)
chainloader +1

This file configures GRUB to build a menu with Red Hat Enterprise Linux as the default operating
system and sets it to autoboot after 10 seconds. Two sections are given, one for each operating system
entry, with commands specific to the system disk partition table.

Note

Note that the default is specified as an integer. This refers to the first title line in the GRUB con-
figuration file. For the Windows section to be set as the default in the previous example, change the
default=0 to default=1.

Configuring a GRUB menu configuration file to boot multiple operating systems is beyond the scope
of this chapter. Consult Section 2.9 Additional Resources for a list of additional resources.

2.7.2. Configuration File Directives
The following are directives commonly used in the GRUB menu configuration file:

• chainloader </path/to/file> — Loads the specified file as a chain loader. Replace
</path/to/file> with the absolute path to the chain loader. If the file is located on the first
sector of the specified partition, use the blocklist notation, +1.

• color <normal-color> <selected-color> — Allows specific colors to be used in the
menu, where two colors are configured as the foreground and background. Use simple color names
such as red/black. For example:
color red/black green/blue

• default=<integer> — Replace <integer> with the default entry title number to be loaded
if the menu interface times out.

• fallback=<integer> — Replace <integer> with the entry title number to try if the first
attempt fails.

• hiddenmenu — Prevents the GRUB menu interface from being displayed, loading the default
entry when the timeout period expires. The user can see the standard GRUB menu by pressing
the [Esc] key.

• initrd </path/to/initrd> — Enables users to specify an initial RAM disk to use when
booting. Replace </path/to/initrd> with the absolute path to the initial RAM disk.

Chapter 2. The GRUB Boot Loader 17

• kernel </path/to/kernel> <option-1> <option-N> — Specifies the kernel file to
load when booting the operating system. Replace </path/to/kernel> with an absolute path
from the partition specified by the root directive. Multiple options can be passed to the kernel
when it is loaded.

• password=<password> — Prevents a user who does not know the password from editing the
entries for this menu option.

Optionally, it is possible to specify an alternate menu configuration file after the
password=<password> directive. In this case, GRUB restarts the second stage boot loader and
uses the specified alternate configuration file to build the menu. If an alternate menu configuration
file is left out of the command, a user who knows the password is allowed to edit the current
configuration file.

For more information about securing GRUB, refer to the chapter titled Workstation Security in the
Red Hat Enterprise Linux Security Guide.

• root (<device-type><device-number>,<partition>)— Configures the root partition
for GRUB, such as (hd0,0), and mounts the partition.

• rootnoverify (<device-type><device-number>,<partition>) — Configures the
root partition for GRUB, just like the root command, but does not mount the partition.

• timeout=<integer> — Specifies the interval, in seconds, that GRUB waits before loading the
entry designated in the default command.

• splashimage=<path-to-image> — Specifies the location of the splash screen image to be
used when GRUB boots.

• title group-title — Specifies a title to be used with a particular group of commands used to
load a kernel or operating system.

To add human-readable comments to the menu configuration file, begin the line with the hash mark
character (#).

2.8. Changing Runlevels at Boot Time
Under Red Hat Enterprise Linux, it is possible to change the default runlevel at boot time.

To change the runlevel of a single boot session, use the following instructions:

• When the GRUB menu bypass screen appears at boot time, press any key to enter the GRUB menu
(within the first three seconds).

• Press the [a] key to append to the kernel command.

• Add <space><runlevel> at the end of the boot options line to boot to the desired runlevel. For
example, the following entry would initiate a boot process into runlevel 3:
grub append> ro root=/dev/VolGroup00/LogVol00 rhgb quiet 3

2.9. Additional Resources
This chapter is only intended as an introduction to GRUB. Consult the following resources to discover
more about how GRUB works.

18 Chapter 2. The GRUB Boot Loader

2.9.1. Installed Documentation

• /usr/share/doc/grub-<version-number>/ — This directory contains good information
about using and configuring GRUB, where <version-number> corresponds to the version
of the GRUB package installed.

• info grub — The GRUB info page contains a tutorial, a user reference manual, a programmer
reference manual, and a FAQ document about GRUB and its usage.

2.9.2. Useful Websites

• http://www.gnu.org/software/grub/ — The home page of the GNU GRUB project. This site contains
information concerning the state of GRUB development and an FAQ.

• http://www.redhat.com/mirrors/LDP/HOWTO/mini/Multiboot-with-GRUB.html — Investigates
various uses for GRUB, including booting operating systems other than Linux.

• http://www.linuxgazette.com/issue64/kohli.html — An introductory article discussing the configu-
ration of GRUB on a system from scratch, including an overview of GRUB command line options.

2.9.3. Related Books

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — The Workstation Security chapter ex-
plains, in a concise manner, how to secure the GRUB boot loader.

Chapter 3.
File System Structure

3.1. Why Share a Common Structure?
The file system structure is the most basic level of organization in an operating system. Almost all of
the ways an operating system interacts with its users, applications, and security model are dependent
upon the way it organizes files on storage devices. Providing a common file system structure ensures
users and programs are able to access and write files.

File systems break files down into two logical categories:

• Shareable vs. unsharable files

• Variable vs. static files

Shareable files are those that can be accessed locally and by remote hosts; unsharable files are only
available locally. Variable files, such as documents, can be changed at any time; static files, such as
binaries, do not change without an action from the system administrator.

The reason for looking at files in this manner is to help correlate the function of the file with the
permissions assigned to the directories which hold them. The way in which the operating system and
its users interact with a given file determines the directory in which it is placed, whether that directory
is mounted with read-only or read/write permissions, and the level of access each user has to that file.
The top level of this organization is crucial. Access to the underlying directories can be restricted or
security problems could manifest themselves if, from the top level down, it does not adhere to a rigid
structure.

3.2. Overview of File System Hierarchy Standard (FHS)
Red Hat Enterprise Linux uses the Filesystem Hierarchy Standard (FHS) file system structure, which
defines the names, locations, and permissions for many file types and directories.

The FHS document is the authoritative reference to any FHS-compliant file system, but the standard
leaves many areas undefined or extensible. This section is an overview of the standard and a descrip-
tion of the parts of the file system not covered by the standard.

Compliance with the standard means many things, but the two most important are compatibility with
other compliant systems and the ability to mount a /usr/ partition as read-only. This second point
is important because the directory contains common executables and should not be changed by users.
Also, since the /usr/ directory is mounted as read-only, it can be mounted from the CD-ROM or
from another machine via a read-only NFS mount.

3.2.1. FHS Organization
The directories and files noted here are a small subset of those specified by the FHS document. Refer
to the latest FHS document for the most complete information.

The complete standard is available online at http://www.pathname.com/fhs/.

20 Chapter 3. File System Structure

3.2.1.1. The /boot/ Directory
The /boot/ directory contains static files required to boot the system, such as the Linux kernel. These
files are essential for the system to boot properly.

Warning

Do not remove the /boot/ directory. Doing so renders the system unbootable.

3.2.1.2. The /dev/ Directory
The /dev/ directory contains file system entries which represent devices that are attached to the
system. These files are essential for the system to function properly.

3.2.1.3. The /etc/ Directory
The /etc/ directory is reserved for configuration files that are local to the machine. No binaries are
to be placed in /etc/. Any binaries that were once located in /etc/ should be placed into /sbin/
or /bin/.

The X11/ and skel/ directories are subdirectories of the /etc/ directory:

/etc
|- X11/
|- skel/

The /etc/X11/ directory is for X Window System configuration files, such as xorg.conf. The
/etc/skel/ directory is for "skeleton" user files, which are used to populate a home directory when
a user is first created.

3.2.1.4. The /lib/ Directory
The /lib/ directory should contain only those libraries needed to execute the binaries in /bin/ and
/sbin/. These shared library images are particularly important for booting the system and executing
commands within the root file system.

3.2.1.5. The /media/ Directory
The /media/ directory contains subdirectories used as mount points for removeable media, such as
3.5 diskettes, CD-ROMs, and Zip disks.

3.2.1.6. The /mnt/ Directory
The /mnt/ directory is reserved for temporarily mounted file systems, such as NFS file system
mounts. For all removeable media, use the /media/ directory.

Chapter 3. File System Structure 21

Note

This directory must not be used by installation programs.

3.2.1.7. The /opt/ Directory
The /opt/ directory provides storage for large, static application software packages.

A package placing files in the /opt/ directory creates a directory bearing the same name as the pack-
age. This directory, in turn, holds files that otherwise would be scattered throughout the file system,
giving the system administrator an easy way to determine the role of each file within a particular
package.

For example, if sample is the name of a particular software package located within the /opt/ di-
rectory, then all of its files are placed in directories inside the /opt/sample/ directory, such as
/opt/sample/bin/ for binaries and /opt/sample/man/ for manual pages.

Large packages that encompass many different sub-packages, each of which accomplish a particular
task, are also located in the /opt/ directory, giving that large package a way to organize itself. In this
way, our sample package may have different tools that each go in their own sub-directories, such as
/opt/sample/tool1/ and /opt/sample/tool2/, each of which can have their own bin/, man/,
and other similar directories.

3.2.1.8. The /proc/ Directory
The /proc/ directory contains special files that either extract information from or send information
to the kernel.

Due to the great variety of data available within /proc/ and the many ways this directory can be
used to communicate with the kernel, an entire chapter has been devoted to the subject. For more
information, refer to Chapter 5 The proc File System.

3.2.1.9. The /sbin/ Directory
The /sbin/ directory stores executables used by the root user. The executables in /sbin/ are only
used at boot time and perform system recovery operations. Of this directory, the FHS says:

/sbin contains binaries essential for booting, restoring, recovering, and/or repairing the system in addition
to the binaries in /bin. Programs executed after /usr/ is known to be mounted (when there are no prob-
lems) are generally placed into /usr/sbin. Locally-installed system administration programs should be
placed into /usr/local/sbin.

At a minimum, the following programs should be in /sbin/:

arp, clock,halt,
init, fsck.*, grub,
ifconfig, mingetty, mkfs.*,
mkswap, reboot, route,
shutdown, swapoff, swapon

22 Chapter 3. File System Structure

3.2.1.10. The /srv/ Directory
The /srv/ directory contains site-specific data served by your system running Red Hat Enterprise
Linux. This directory gives users the location of data files for a particular service, such as FTP, WWW,
or CVS. Data that only pertains to a specific user should go in the /home/ directory.

Note

Please be aware that data files currently located in /var/ may move to /srv/ in future releases.

3.2.1.11. The /sys/ Directory
The /sys/ directory utilizes the new sysfs virtual file system specific to the 2.6 kernel. With the
increased support for hot plug hardware devices in the 2.6 kernel, the /sys/ directory contains in-
formation similarly held in /proc/, but displays a hierarchical view of specific device information in
regards to hot plug devices.

To see how certain USB and FireWire devices are actually mounted, refer to the /sbin/hotplug and
/sbin/udev man pages.

3.2.1.12. The /usr/ Directory
The /usr/ directory is for files that can be shared across multiple machines. The /usr/ directory is
often on its own partition and is mounted read-only. At a minimum, the following directories should
be subdirectories of /usr/:

/usr
|- bin/
|- etc/
|- games/
|- include/
|- kerberos/
|- lib/
|- libexec/
|- local/
|- sbin/
|- share/
|- src/
|- tmp -> ../var/tmp/
|- X11R6/

Under the /usr/ directory, the bin/ subdirectory contains executables, etc/ contains system-wide
configuration files, games is for games, include/ contains C header files, kerberos/ contains
binaries and other Kerberos-related files, and lib/ contains object files and libraries that are not
designed to be directly utilized by users or shell scripts. The libexec/ directory contains small
helper programs called by other programs, sbin/ is for system administration binaries (those that do
not belong in the /sbin/ directory), share/ contains files that are not architecture-specific, src/ is
for source code, and X11R6/ is for the X Window System (XFree86 on Red Hat Enterprise Linux).

Chapter 3. File System Structure 23

3.2.1.13. The /usr/local/ Directory
The FHS says:

The /usr/local hierarchy is for use by the system administrator when installing software locally. It needs
to be safe from being overwritten when the system software is updated. It may be used for programs and
data that are shareable among a group of hosts, but not found in /usr.

The /usr/local/ directory is similar in structure to the /usr/ directory. It has the following subdi-
rectories, which are similar in purpose to those in the /usr/ directory:

/usr/local
|- bin/
|- etc/
|- games/
|- include/
|- lib/
|- libexec/
|- sbin/
|- share/
|- src/

In Red Hat Enterprise Linux, the intended use for the /usr/local/ directory is slightly different
from that specified by the FHS. The FHS says that /usr/local/ should be where software that is
to remain safe from system software upgrades is stored. Since software upgrades can be performed
safely with RPM Package Manager (RPM), it is not necessary to protect files by putting them in
/usr/local/. Instead, the /usr/local/ directory is used for software that is local to the machine.

For instance, if the /usr/ directory is mounted as a read-only NFS share from a remote host, it is still
possible to install a package or program under the /usr/local/ directory.

3.2.1.14. The /var/ Directory
Since the FHS requires Linux to mount /usr/ as read-only, any programs that write log files or need
spool/ or lock/ directories should write them to the /var/ directory. The FHS states /var/ is for:

...variable data files. This includes spool directories and files, administrative and logging data, and transient
and temporary files.

Below are some of the directories found within the /var/ directory:

/var
|- account/
|- arpwatch/
|- cache/
|- crash/
|- db/
|- empty/
|- ftp/
|- gdm/
|- kerberos/
|- lib/
|- local/
|- lock/
|- log/
|- mail -> spool/mail/
|- mailman/
|- named/
|- nis/

24 Chapter 3. File System Structure

|- opt/
|- preserve/
|- run/
+- spool/

|- at/
|- clientmqueue/
|- cron/
|- cups/
|- exim/
|- lpd/
|- mail/
|- mailman/
|- mqueue/
|- news/
|- postfix/
|- repackage/
|- rwho/
|- samba/
|- squid/
|- squirrelmail/
|- up2date/
|- uucp
|- uucppublic/
|- vbox/

|- tmp/
|- tux/
|- www/
|- yp/

System log files, such as messages/ and lastlog/, go in the /var/log/ directory. The
/var/lib/rpm/ directory contains RPM system databases. Lock files go in the /var/lock/
directory, usually in directories for the program using the file. The /var/spool/ directory has
subdirectories for programs in which data files are stored.

3.3. Special File Locations Under Red Hat Enterprise Linux
Red Hat Enterprise Linux extends the FHS structure slightly to accommodate special files.

Most files pertaining to RPM are kept in the /var/lib/rpm/ directory. For more information on
RPM, refer to the chapter titled Package Management with RPM in the Red Hat Enterprise Linux
System Administration Guide.

The /var/spool/up2date/ directory contains files used by Red Hat Update Agent, including
RPM header information for the system. This location may also be used to temporarily store RPMs
downloaded while updating the system. For more information about Red Hat Network, refer to the
documentation online at https://rhn.redhat.com/.

Another location specific to Red Hat Enterprise Linux is the /etc/sysconfig/ directory. This di-
rectory stores a variety of configuration information. Many scripts that run at boot time use the files
in this directory. Refer to Chapter 4 The sysconfig Directory for more information about what is
within this directory and the role these files play in the boot process.

Finally, one more directory worth noting is the /initrd/ directory. It is empty, but is used as a critical
mount point during the boot process.

Chapter 3. File System Structure 25

Warning

Do not remove the /initrd/ directory for any reason. Removing this directory causes the system to
fail to boot with a kernel panic error message.

26 Chapter 3. File System Structure

Chapter 4.
The sysconfig Directory

The /etc/sysconfig/ directory contains a variety of system configuration files for Red Hat Enter-
prise Linux.

This chapter outlines some of the files found in the /etc/sysconfig/ directory, their function, and
their contents. The information in this chapter is not intended to be complete, as many of these files
have a variety of options that are only used in very specific or rare circumstances.

4.1. Files in the /etc/sysconfig/ Directory
The following files are normally found in the /etc/sysconfig/ directory:

• amd

• apmd

• arpwatch

• authconfig

• autofs

• clock

• desktop

• devlabel

• dhcpd

• exim

• firstboot

• gpm

• harddisks

• hwconf

• i18n

• init

• ip6tables-config

• iptables-config

• irda

• keyboard

• kudzu

• mouse

• named

• netdump

• network

• ntpd

28 Chapter 4. The sysconfig Directory

• pcmcia

• radvd

• rawdevices

• samba

• sendmail

• selinux

• spamassassin

• squid

• system-config-securitylevel

• system-config-users

• system-logviewer

• tux

• vncservers

• xinetd

Note

If some of the files listed here are not present in the /etc/sysconfig/ directory, the corresponding
program may not be installed.

The following sections offer descriptions of these files. Files not listed here as well as extra file options
found in the /usr/share/doc/initscripts-<version-number>/sysconfig.txt file (re-
place <version-number> with the version of the initscripts package). Alternatively, looking
through the initscripts in the /etc/rc.d/ directory can prove helpful.

4.1.1. /etc/sysconfig/amd
The /etc/sysconfig/amd file contains various parameters used by amd; these parameters allow for
the automatic mounting and unmounting of file systems.

4.1.2. /etc/sysconfig/apmd
The /etc/sysconfig/apmd file is used by apmd to configure what power settings to
start/stop/change on suspend or resume. This file configures how apmd functions at boot time,
depending on whether the hardware supports Advanced Power Management (APM) or whether the
user has configured the system to use it. The apm daemon is a monitoring program that works with
power management code within the Linux kernel. It is capable of alerting users to low battery power
on laptops and other power-related settings.

4.1.3. /etc/sysconfig/arpwatch
The /etc/sysconfig/arpwatch file is used to pass arguments to the arpwatch daemon at boot
time. The arpwatch daemon maintains a table of Ethernet MAC addresses and their IP address pair-
ings. By default, this file sets the owner of the arpwatch process to the user pcap as well as sends

Chapter 4. The sysconfig Directory 29

any messages to the root mail queue. For more information regarding available parameters for this
file, refer to the arpwatch man page.

4.1.4. /etc/sysconfig/authconfig
The /etc/sysconfig/authconfigfile sets the authorization to be used on the host. It contains one
or more of the following lines:

• USEMD5=<value>, where <value> is one of the following:

• yes — MD5 is used for authentication.

• no — MD5 is not used for authentication.

• USEKERBEROS=<value>, where <value> is one of the following:

• yes — Kerberos is used for authentication.

• no — Kerberos is not used for authentication.

• USELDAPAUTH=<value>, where <value> is one of the following:

• yes — LDAP is used for authentication.

• no — LDAP is not used for authentication.

4.1.5. /etc/sysconfig/autofs
The /etc/sysconfig/autofs file defines custom options for the automatic mounting of devices.
This file controls the operation of the automount daemons, which automatically mount file systems
when you use them and unmount them after a period of inactivity. File systems can include network
file systems, CD-ROMs, diskettes, and other media.

The /etc/sysconfig/autofs file may contain the following:

• LOCALOPTIONS="<value>", where "<value>" is a string for defining machine specific auto-
mount rules. The default value is an empty string ("").

• DAEMONOPTIONS="<value>", where "<value>" is the timeout length in seconds before un-
mounting the device. The default value is 60 seconds ("--timeout=60").

• UNDERSCORETODOT=<value>, where <value> is a binary value that controls whether to con-
vert underscores in file names into dots. For example, auto_home to auto.home and auto_mnt
to auto.mnt. The default value is 1 (true).

• DISABLE_DIRECT=<value>, where <value> is a binary value that controls whether to disable
direct mount support, as the Linux implementation does not conform to the Sun Microsystems’
automounter behavior. The default value is 1 (true), and allows for compatibility with the Sun
automounter options specification syntax.

30 Chapter 4. The sysconfig Directory

4.1.6. /etc/sysconfig/clock
The /etc/sysconfig/clock file controls the interpretation of values read from the system hard-
ware clock.

The correct values are:

• UTC=<value>, where <value> is one of the following boolean values:

• true or yes — The hardware clock is set to Universal Time.

• false or no — The hardware clock is set to local time.

• ARC=<value>, where <value> is the following:

• true or yes — The ARC console’s 42-year time offset is in effect. This setting is only for ARC-
or AlphaBIOS-based Alpha systems.

• false or no — This value indicates that the normal UNIX epoch is in use.

• SRM=<value>, where <value> is the following:

• true or yes — The SRM console’s 1900 epoch is in effect. This setting is only for SRM-based
Alpha systems.

• false or no — This value indicates that the normal UNIX epoch is in use.

• ZONE=<filename> — The time zone file under /usr/share/zoneinfo that /etc/localtime
is a copy of. The file contains information such as:
ZONE="America/New York"

Earlier releases of Red Hat Enterprise Linux used the following values (which are deprecated):

• CLOCKMODE=<value>, where <value> is one of the following:

• GMT — The clock is set to Universal Time (Greenwich Mean Time).

• ARC — The ARC console’s 42-year time offset is in effect (for Alpha-based systems only).

4.1.7. /etc/sysconfig/desktop
The /etc/sysconfig/desktop file specifies the desktop for new users and the display manager to
run when entering runlevel 5.

Correct values are:

• DESKTOP="<value>", where "<value>" is one of the following:

• GNOME — Selects the GNOME desktop environment.

• KDE — Selects the KDE desktop environment.

• DISPLAYMANAGER="<value>", where "<value>" is one of the following:

• GNOME — Selects the GNOME Display Manager.

• KDE — Selects the KDE Display Manager.

• XDM — Selects the X Display Manager.

Chapter 4. The sysconfig Directory 31

For more information, refer to Chapter 7 The X Window System.

4.1.8. /etc/sysconfig/devlabel
The /etc/sysconfig/devlabel is the devlabel configuration file. It should not be modified by
hand, but rather, configured using the /sbin/devlabel command.

For instructions on using the devlabel command, refer to the chapter titled User-Defined Device
Names in the Red Hat Enterprise Linux System Administration Guide.

4.1.9. /etc/sysconfig/dhcpd
The /etc/sysconfig/dhcpd file is used to pass arguments to the dhcpd daemon at boot time.
The dhcpd daemon implements the Dynamic Host Configuration Protocol (DHCP) and the Internet
Bootstrap Protocol (BOOTP). DHCP and BOOTP assign hostnames to machines on the network. For
more information about what parameters are available in this file, refer to the dhcpd man page.

4.1.10. /etc/sysconfig/exim
The /etc/sysconfig/exim file allows messages to be sent to one or more clients, routing the
messages over whatever networks are necessary. The file sets the default values for exim to run.
Its default values are set to run as a background daemon and to check its queue each hour in case
something has backed up.

The values include:

• DAEMON=<value>, where <value> is one of the following:

• yes — exim should be configured to listen to port 25 for incoming mail. yes implies the use of
Exim’s -bd options.

• no — exim should not be configured to listen to port 25 for incoming mail.

• QUEUE=1h which is given to exim as -q$QUEUE. The -q option is not given to exim if
/etc/sysconfig/exim exists and QUEUE is empty or undefined.

4.1.11. /etc/sysconfig/firstboot
The first time the system boots, the /sbin/init program calls the etc/rc.d/init.d/firstboot
script, which in turn launches the Setup Agent. This application allows the user to install the latest
updates as well as additional applications and documentation.

The /etc/sysconfig/firstboot file tells the Setup Agent application not to run on subsequent
reboots. To run it the next time the system boots, remove /etc/sysconfig/firstboot and execute
chkconfig --level 5 firstboot on.

4.1.12. /etc/sysconfig/gpm
The /etc/sysconfig/gpm file is used to pass arguments to the gpm daemon at boot time. The gpm
daemon is the mouse server which allows mouse acceleration and middle-click pasting. For more
information about what parameters are available for this file, refer to the gpm man page. By default,
the DEVICE directive is set to /dev/input/mice.

32 Chapter 4. The sysconfig Directory

4.1.13. /etc/sysconfig/harddisks
The /etc/sysconfig/harddisks file tunes the hard drive(s). An administrator can also use
/etc/sysconfig/hardiskhd[a-h] to configure parameters for specific drives.

Warning

Do not make changes to this file without careful consideration. By changing the default values, it is
possible to corrupt all of the data on the hard drive(s).

The /etc/sysconfig/harddisks file may contain the following:

• USE_DMA=1, where setting this value to 1 enables DMA. However, with some chipsets and hard
drive combinations, DMA can cause data corruption. Check the hard drive documentation or with
the manufacturer before enabling this option. By default, this entry is commented out, and therefore
disabled.

• Multiple_IO=16, where a setting of 16 allows for multiple sectors per I/O interrupt. When en-
abled, this feature reduces operating system overhead by 30-50%. Use with caution. By default,
this entry is commented out, and therefore disabled.

• EIDE_32BIT=3 enables (E)IDE 32-bit I/O support to an interface card. By default, this entry is
commented out, and therefore disabled.

• LOOKAHEAD=1 enables drive read-lookahead. By default, this entry is commented out, and therefore
disabled.

• EXTRA_PARAMS= specifies where extra parameters can be added. By default, there are no parame-
ters listed.

4.1.14. /etc/sysconfig/hwconf
The /etc/sysconfig/hwconf file lists all the hardware that kudzu detected on the system, as well
as the drivers used, vendor ID, and device ID information. The kudzu program detects and configures
new and/or changed hardware on a system. The /etc/sysconfig/hwconf file is not meant to be
manually edited. If edited, devices could suddenly show up as being added or removed.

4.1.15. /etc/sysconfig/i18n
The /etc/sysconfig/i18n file sets the default language, any supported languages, and the default
system font. For example:

LANG="en_US.UTF-8"
SUPPORTED="en_US.UTF-8:en_US:en"
SYSFONT="latarcyrheb-sun16"

4.1.16. /etc/sysconfig/init
The /etc/sysconfig/init file controls how the system appears and functions during the boot
process.

The following values may be used:

Chapter 4. The sysconfig Directory 33

• BOOTUP=<value>, where <value> is one of the following:

• color — The standard color boot display, where the success or failure of devices and services
starting up is shown in different colors.

• verbose — An old style display which provides more information than purely a message of
success or failure.

• Anything else means a new display, but without ANSI-formatting.

• RES_COL=<value>, where <value> is the number of the column of the screen to start status
labels. The default is set to 60.

• MOVE_TO_COL=<value>, where <value> moves the cursor to the value in the RES_COL line
via the echo -en command.

• SETCOLOR_SUCCESS=<value>, where <value> sets the success color via the echo -en com-
mand. The default color is set to green.

• SETCOLOR_FAILURE=<value>, where <value> sets the failure color via the echo -en com-
mand. The default color is set to red.

• SETCOLOR_WARNING=<value>, where <value> sets the warning color via the echo -en com-
mand. The default color is set to yellow.

• SETCOLOR_NORMAL=<value>, where <value> resets the color to "normal" via the echo -en.

• LOGLEVEL=<value>, where <value> sets the initial console logging level for the kernel. The
default is 3; 8 means everything (including debugging), while 1 means only kernel panics. The
syslogd daemon overrides this setting once started.

• PROMPT=<value>, where <value> is one of the following boolean values:

• yes — Enables the key check for interactive mode.

• no — Disables the key check for interactive mode.

4.1.17. /etc/sysconfig/ip6tables-config
The /etc/sysconfig/ip6tables-configfile stores information used by the kernel to set up IPv6
packet filtering at boot time or whenever the ip6tables service is started.

Do not modify this file by hand unless familiar with how to construct ip6tables rules. Rules also
can be created manually using the /sbin/ip6tables command. Once created, add the rules to the
/etc/sysconfig/ip6tables file by typing the following command:

/sbin/service ip6tables save

Once this file exists, any firewall rules saved in it persists through a system reboot or a service restart.

For more information on ip6tables, refer to Chapter 18 iptables.

4.1.18. /etc/sysconfig/iptables-config
The /etc/sysconfig/iptables-configfile stores information used by the kernel to set up packet
filtering services at boot time or whenever the service is started.

Do not modify this file by hand unless you are familiar with constructing iptables
rules. The easiest way to add rules is to use the Security Level Configuration Tool

34 Chapter 4. The sysconfig Directory

(system-config-securitylevel) application to create a firewall. These applications
automatically edit this file at the end of the process.

Rules can also be created manually using the /sbin/iptables command. Once created, add the
rule(s) to the /etc/sysconfig/iptables file by typing the following command:

/sbin/service iptables save

Once this file exists, any firewall rules saved in it persists through a system reboot or a service restart.

For more information on iptables, refer to Chapter 18 iptables.

4.1.19. /etc/sysconfig/irda
The /etc/sysconfig/irda file controls how infrared devices on the system are configured at
startup.

The following values may be used:

• IRDA=<value>, where <value> is one of the following boolean values:

• yes — irattach runs and periodically checks to see if anything is trying to connect to the
infrared port, such as another notebook computer trying to make a network connection. For
infrared devices to work on the system, this line must be set to yes.

• no — irattach does not run, preventing infrared device communication.

• DEVICE=<value>, where <value> is the device (usually a serial port) that handles infrared
connections. A sample serial device entry could be /dev/ttyS2.

• DONGLE=<value>, where <value> specifies the type of dongle being used for infrared com-
munication. This setting exists for people who use serial dongles rather than real infrared ports. A
dongle is a device that is attached to a traditional serial port to communicate via infrared. This line
is commented out by default because notebooks with real infrared ports are far more common than
computers with add-on dongles. A sample dongle entry could be actisys+.

• DISCOVERY=<value>, where <value> is one of the following boolean values:

• yes — Starts irattach in discovery mode, meaning it actively checks for other infrared de-
vices. This must be turned on for the machine to actively look for an infrared connection (mean-
ing the peer that does not initiate the connection).

• no — Does not start irattach in discovery mode.

4.1.20. /etc/sysconfig/keyboard
The /etc/sysconfig/keyboard file controls the behavior of the keyboard. The following values
may be used:

• KEYBOARDTYPE="sun|pc" where sun means a Sun keyboard is attached on /dev/kbd, or pc
means a PS/2 keyboard connected to a PS/2 port.

• KEYTABLE="<file>", where <file> is the name of a keytable file.

For example: KEYTABLE="us". The files that can be used as keytables start in
/lib/kbd/keymaps/i386 and branch into different keyboard layouts from there, all labeled

Chapter 4. The sysconfig Directory 35

<file>.kmap.gz. The first file found beneath /lib/kbd/keymaps/i386 that matches the
KEYTABLE setting is used.

4.1.21. /etc/sysconfig/kudzu
The /etc/sysconfig/kuzdu file triggers a safe probe of the system hardware by kudzu at boot
time. A safe probe is one that disables serial port probing.

• SAFE=<value>, where <value> is one of the following:

• yes — kuzdu does a safe probe.

• no — kuzdu does a normal probe.

4.1.22. /etc/sysconfig/mouse
The /etc/sysconfig/mouse file is used to specify information about the available mouse. The
following values may be used:

• FULLNAME="<value>", where "<value>" refers to the full name of the kind of mouse being
used.

• MOUSETYPE="<value>", where "<value>" is one of the following:

• imps2 — A generic USB wheel mouse.

• microsoft — A Microsoft™ mouse.

• mouseman — A MouseMan™ mouse.

• mousesystems — A Mouse Systems™ mouse.

• ps/2 — A PS/2 mouse.

• msbm — A Microsoft™ bus mouse.

• logibm — A Logitech™ bus mouse.

• atibm — An ATI™ bus mouse.

• logitech — A Logitech™ mouse.

• mmseries — An older MouseMan™ mouse.

• mmhittab — An mmhittab mouse.

• XEMU3="<value>", where "<value>" is one of the following boolean values:

• yes — The mouse only has two buttons, but three mouse buttons should be emulated.

• no — The mouse already has three buttons.

• XMOUSETYPE="<value>", where "<value>" refers to the kind of mouse used when X is run-
ning. The options here are the same as the MOUSETYPE setting in this same file.

• DEVICE=<value>, where <value> is the mouse device.

A sample value, /dev/input/mice, is a symbolic link that points to the actual mouse device.

36 Chapter 4. The sysconfig Directory

4.1.23. /etc/sysconfig/named
The /etc/sysconfig/named file is used to pass arguments to the named daemon at boot time.
The named daemon is a Domain Name System (DNS) server which implements the Berkeley Internet
Name Domain (BIND) version 9 distribution. This server maintains a table of which hostnames are
associated with IP addresses on the network.

Currently, only the following values may be used:

• ROOTDIR="</some/where>", where </some/where> refers to the full directory path of a con-
figured chroot environment under which named runs. This chroot environment must first be config-
ured. Type info chroot for more information.

• OPTIONS="<value>", where <value> is any option listed in the man page for named except
-t. In place of -t, use the ROOTDIR line above.

For more information about available parameters for this file, refer to the named man
page. For detailed information on how to configure a BIND DNS server, refer to
Chapter 12 Berkeley Internet Name Domain (BIND). By default, the file contains no parameters.

4.1.24. /etc/sysconfig/netdump
The /etc/sysconfig/netdump file is the configuration file for the /etc/init.d/netdump ser-
vice. The netdump service sends both oops data and memory dumps over the network. In general,
netdump is not a required service; only run it if absolutely necessary. For more information about
what parameters are available for this file, refer to the netdump man page.

4.1.25. /etc/sysconfig/network
The /etc/sysconfig/network file is used to specify information about the desired network con-
figuration. The following values may be used:

• NETWORKING=<value>, where <value> is one of the following boolean values:

• yes — Networking should be configured.

• no — Networking should not be configured.

• HOSTNAME=<value>, where <value> should be the Fully Qualified Domain Name (FQDN),
such as hostname.expample.com, but can be whatever hostname is necessary.

Note

For compatibility with older software that some users may need to install, such as trn, the
/etc/HOSTNAME file should contain the same value as set here.

• GATEWAY=<value>, where <value> is the IP address of the network’s gateway.

• GATEWAYDEV=<value>, where <value> is the gateway device, such as eth0.

• NISDOMAIN=<value>, where <value> is the NIS domain name.

Chapter 4. The sysconfig Directory 37

4.1.26. /etc/sysconfig/ntpd
The /etc/sysconfig/ntpd file is used to pass arguments to the ntpd daemon at boot time.
The ntpd daemon sets and maintains the system clock to synchronize with an Internet standard
time server. It implements version 4 of the Network Time Protocol (NTP). For more information
about what parameters are available for this file, use a Web browser to view the following file:
/usr/share/doc/ntp-<version>/ntpd.htm (where <version> is the version number of
ntpd). By default, this file sets the owner of the ntpd process to the user ntp.

4.1.27. /etc/sysconfig/pcmcia
The /etc/sysconfig/pcmcia file is used to specify PCMCIA configuration information. The fol-
lowing values may be used:

• PCMCIA=<value>, where <value> is one of the following:

• yes — PCMCIA support should be enabled.

• no — PCMCIA support should not be enabled.

• PCIC=<value>, where <value> is one of the following:

• i82365 — The computer has an i82365-style PCMCIA socket chipset.

• tcic — The computer has a tcic-style PCMCIA socket chipset.

• PCIC_OPTS=<value>, where <value> is the socket driver (i82365 or tcic) timing parame-
ters.

• CORE_OPTS=<value>, where <value> is the list of pcmcia_core options.

• CARDMGR_OPTS=<value>, where <value> is the list of options for the PCMCIA cardmgr
(such as -q for quiet mode, -m to look for loadable kernel modules in the specified directory, and
so on). Read the cardmgr man page for more information.

4.1.28. /etc/sysconfig/radvd
The /etc/sysconfig/radvd file is used to pass arguments to the radvd daemon at boot time.
The radvd daemon listens for router requests and sends router advertisements for the IP version 6
protocol. This service allows hosts on a network to dynamically change their default routers based on
these router advertisements. For more information about available parameters for this file, refer to the
radvd man page. By default, this file sets the owner of the radvd process to the user radvd.

4.1.29. /etc/sysconfig/rawdevices
The /etc/sysconfig/rawdevices file is used to configure raw device bindings, such as:

/dev/raw/raw1 /dev/sda1
/dev/raw/raw2 8 5

38 Chapter 4. The sysconfig Directory

4.1.30. /etc/sysconfig/samba
The /etc/sysconfig/samba file is used to pass arguments to the smbd and the nmbd daemons at
boot time. The smbd daemon offers file sharing connectivity for Windows clients on the network. The
nmbd daemon offers NetBIOS over IP naming services. For more information about what parameters
are available for this file, refer to the smbd man page. By default, this file sets smbd and nmbd to run
in daemon mode.

4.1.31. /etc/sysconfig/selinux
The /etc/sysconfig/selinux file contains the basic configuration options for SELinux. This
file is a symbolic link to /etc/selinux/config. For more information on SELinux, refer to
Chapter 21 SELinux.

4.1.32. /etc/sysconfig/sendmail
The /etc/sysconfig/sendmail file allows messages to be sent to one or more clients, routing
the messages over whatever networks are necessary. The file sets the default values for the Sendmail
application to run. Its default values are set to run as a background daemon and to check its queue
each hour in case something has backed up.

Values include:

• DAEMON=<value>, where <value> is one of the following:

• yes — Sendmail should be configured to listen to port 25 for incoming mail. yes implies the
use of Sendmail’s -bd options.

• no — Sendmail should not be configured to listen to port 25 for incoming mail.

• QUEUE=1h which is given to Sendmail as -q$QUEUE. The -q option is not given to Sendmail if
/etc/sysconfig/sendmail exists and QUEUE is empty or undefined.

4.1.33. /etc/sysconfig/spamassassin
The /etc/sysconfig/spamassassin file is used to pass arguments to the spamd daemon (a dae-
monized version of Spamassassin) at boot time. Spamassassin is an email spam filter application. For
a list of available options, refer to the spamd man page. By default, it configures spamd to run in
daemon mode, create user preferences, and auto-create whitelists (allowed bulk senders).

For more information about Spamassassin, refer to Section 11.4.2.6 Spam Filters.

4.1.34. /etc/sysconfig/squid
The /etc/sysconfig/squid file is used to pass arguments to the squid daemon at
boot time. The squid daemon is a proxy caching server for Web client applications. For
more information on configuring a squid proxy server, use a Web browser to open the
/usr/share/doc/squid-<version>/ directory (replace <version> with the squid version
number installed on the system). By default, this file sets squid to start in daemon mode and sets the
amount of time before it shuts itself down.

Chapter 4. The sysconfig Directory 39

4.1.35. /etc/sysconfig/system-config-securitylevel
The /etc/sysconfig/system-config-securitylevel file contains all options chosen by the
user the last time the Security Level Configuration Tool (system-config-securitylevel) was
run. Users should not modify this file by hand. For more information about the Security Level Con-
figuration Tool, refer to the chapter titled Basic Firewall Configuration in the Red Hat Enterprise
Linux System Administration Guide.

4.1.36. /etc/sysconfig/system-config-users
The /etc/sysconfig/system-config-users file is the configuration file for the graphical ap-
plication, User Manager. This file is used to filter out system users such as root, daemon, or lp.
This file is edited by the Preferences => Filter system users and groups pull-down menu in the
User Manager application and should never be edited by hand. For more information on using this
application, refer to the chapter called User and Group Configuration in the Red Hat Enterprise Linux
System Administration Guide.

4.1.37. /etc/sysconfig/system-logviewer
The /etc/sysconfig/system-logviewer file is the configuration file for the graphical, interac-
tive log viewing application, Log Viewer. This file is edited by the Edit => Preferences pull-down
menu in the Log Viewer application and should not be edited by hand. For more information on
using this application, refer to the chapter called Log Files in the Red Hat Enterprise Linux System
Administration Guide.

4.1.38. /etc/sysconfig/tux
The /etc/sysconfig/tux file is the configuration file for the Red Hat Content
Accelerator (formerly known as TUX), the kernel-based Web server. For more information
on configuring the Red Hat Content Accelerator, use a Web browser to open the
/usr/share/doc/tux-<version>/tux/index.html file (replace <version> with the
version number of TUX installed on the system). The parameters available for this file are listed in
/usr/share/doc/tux-<version>/tux/parameters.html.

4.1.39. /etc/sysconfig/vncservers
The /etc/sysconfig/vncservers file configures the way the Virtual Network Computing (VNC)
server starts up.

VNC is a remote display system which allows users to view the desktop environment not only on the
machine where it is running but across different networks on a variety of architectures.

It may contain the following:

• VNCSERVERS=<value>, where <value> is set to something like "1:fred", to indicate that a
VNC server should be started for user fred on display :1. User fred must have set a VNC password
using the vncpasswd command before attempting to connect to the remote VNC server.

Note that when using a VNC server, communication with it is unencrypted and it should not be used on
an untrusted network. For specific instructions concerning the use of SSH to secure VNC communi-
cation, read the information found online at http://www.uk.research.att.com/archive/vnc/sshvnc.html.
To find out more about SSH, refer to Chapter 20 SSH Protocol in the Red Hat Enterprise Linux System
Administration Guide.

40 Chapter 4. The sysconfig Directory

4.1.40. /etc/sysconfig/xinetd
The /etc/sysconfig/xinetd file is used to pass arguments to the xinetd daemon at boot time.
The xinetd daemon starts programs that provide Internet services when a request to the port for that
service is received. For more information about available parameters for this file, refer to the xinetd
man page. For more information on the xinetd service, refer to Section 17.3 xinetd.

4.2. Directories in the /etc/sysconfig/ Directory
The following directories are normally found in /etc/sysconfig/.

• apm-scripts/ — This directory contains the APM suspend/resume script.
Do not edit the files directly. If customization is necessary, create a file called
/etc/sysconfig/apm-scripts/apmcontinue which is called at the end of the script. It is
also possible to control the script by editing /etc/sysconfig/apmd.

• cbq/ — This directory contains the configuration files needed to do Class Based Queuing for
bandwidth management on network interfaces. CBQ divides user traffic into a hierarchy of classes
based on any combination of IP addresses, protocols, and application types.

• networking/ — This directory is used by the Network Administration Tool
(system-config-network), and its contents should not be edited manually. For more
information about configuring network interfaces using the Network Administration Tool,
refer to the chapter called Network Configuration in the Red Hat Enterprise Linux System
Administration Guide.

• network-scripts/ — This directory contains the following network-related configuration files:

• Network configuration files for each configured network interface, such as ifcfg-eth0 for the
eth0 Ethernet interface.

• Scripts used to bring up and down network interfaces, such as ifup and ifdown.

• Scripts used to bring up and down ISDN interfaces, such as ifup-isdn and ifdown-isdn.

• Various shared network function scripts which should not be edited directly.

For more information on the network-scripts directory, refer to Chapter 8 Network Interfaces.

• rhn/ — This directory contains the configuration files and GPG keys for Red Hat Network. No
files in this directory should be edited by hand. For more information on Red Hat Network, refer to
the Red Hat Network website online at https://rhn.redhat.com/.

4.3. Additional Resources
This chapter is only intended as an introduction to the files in the /etc/sysconfig/ directory. The
following source contains more comprehensive information.

4.3.1. Installed Documentation

• /usr/share/doc/initscripts-<version-number>/sysconfig.txt — This file
contains a more authoritative listing of the files found in the /etc/sysconfig/ directory and the
configuration options available for them. The <version-number> in the path to this file
corresponds to the version of the initscripts package installed.

Chapter 5.
The proc File System

The Linux kernel has two primary functions: to control access to physical devices on the computer
and to schedule when and how processes interact with these devices. The /proc/ directory — also
called the proc file system — contains a hierarchy of special files which represent the current state of
the kernel — allowing applications and users to peer into the kernel’s view of the system.

Within the /proc/ directory, one can find a wealth of information detailing the system hardware and
any processes currently running. In addition, some of the files within the /proc/ directory tree can
be manipulated by users and applications to communicate configuration changes to the kernel.

5.1. A Virtual File System
Under Linux, all data are stored as files. Most users are familiar with the two primary types of files:
text and binary. But the /proc/ directory contains another type of file called a virtual file. It is for
this reason that /proc/ is often referred to as a virtual file system.

These virtual files have unique qualities. Most of them are listed as zero bytes in size and yet when one
is viewed, it can contain a large amount of information. In addition, most of the time and date settings
on virtual files reflect the current time and date, indicative of the fact they are constantly updated.

Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and
/proc/partitions provide an up-to-the-moment glimpse of the system’s hardware. Others,
like the /proc/filesystems file and the /proc/sys/ directory provide system configuration
information and interfaces.

For organizational purposes, files containing information on a similar topic are grouped into virtual
directories and sub-directories. For instance, /proc/ide/ contains information for all physical IDE
devices. Likewise, process directories contain information about each running process on the system.

5.1.1. Viewing Virtual Files
By using the cat, more, or less commands on files within the /proc/ directory, users can immedi-
ately access enormous amounts of information about the system. For example, to display the type of
CPU a computer has, type cat /proc/cpuinfo to receive output similar to the following:

processor : 0
vendor_id : AuthenticAMD
cpu family : 5
model : 9
model name : AMD-K6(tm) 3D+ Processor
stepping : 1
cpu MHz : 400.919
cache size : 256 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes
flags : fpu vme de pse tsc msr mce cx8 pge mmx syscall 3dnow k6_mtrr

42 Chapter 5. The proc File System

bogomips : 799.53

When viewing different virtual files in the /proc/ file system, some of the information is easily
understandable while some is not human-readable. This is in part why utilities exist to pull data from
virtual files and display it in a useful way. Examples of these utilities include lspci, apm, free, and
top.

Note

Some of the virtual files in the /proc/ directory are readable only by the root user.

5.1.2. Changing Virtual Files
As a general rule, most virtual files within the /proc/ directory are read-only. However, some can be
used to adjust settings in the kernel. This is especially true for files in the /proc/sys/ subdirectory.

To change the value of a virtual file, use the echo command and a greater than symbol (>) to redirect
the new value to the file. For example, to change the hostname on the fly, type:

echo www.example.com > /proc/sys/kernel/hostname

Other files act as binary or boolean switches. Typing cat /proc/sys/net/ipv4/ip_forward
returns either a 0 or a 1. A 0 indicates that the kernel is not forwarding network packets. Using the
echo command to change the value of the ip_forward file to 1 immediately turns packet forwarding
on.

Tip

Another command used to alter settings in the /proc/sys/ subdirectory is /sbin/sysctl. For more
information on this command, refer to Section 5.4 Using the sysctl Command

For a listing of some of the kernel configuration files available in the /proc/sys/ subdirectory, refer
to Section 5.3.9 /proc/sys/.

5.2. Top-level Files within the proc File System
Below is a list of some of the more useful virtual files in the top-level of the /proc/ directory.

Note

In most cases, the content of the files listed in this section are not the same as those installed on
your machine. This is because much of the information is specific to the hardware on which Red Hat
Enterprise Linux is running for this documentation effort.

Chapter 5. The proc File System 43

5.2.1. /proc/apm
This file provides information about the state of the Advanced Power Management (APM) system and
is used by the apm command. If a system with no battery is connected to an AC power source, this
virtual file would look similar to the following:

1.16 1.2 0x07 0x01 0xff 0x80 -1% -1 ?

Running the apm -v command on such a system results in output similar to the following:

APM BIOS 1.2 (kernel driver 1.16ac)
AC on-line, no system battery

For systems which do not use a battery as a power source, apm is able do little more than put the
machine in standby mode. The apm command is much more useful on laptops. For example, the
following output is from the command cat /proc/apm on a laptop while plugged into a power
outlet:

1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ?

When the same laptop is unplugged from its power source for a few minutes, the content of the apm
file changes to something like the following:

1.16 1.2 0x03 0x00 0x00 0x01 99% 1792 min

The apm -v command now yields more useful data, such as the following:

APM BIOS 1.2 (kernel driver 1.16)
AC off-line, battery status high: 99% (1 day, 5:52)

5.2.2. /proc/buddyinfo
This file is used primarily for diagnosing memory fragmentation issues. Using the buddy algorithm,
each column represents the number of pages of a certain order (a certain size) that are available at any
given time. For example, for zone DMA (direct memory access), there are 90 of 2^(0*PAGE_SIZE)
chunks of memory. Similarly, there are 6 of 2^(1*PAGE_SIZE) chunks, and 2 of 2^(2*PAGE_SIZE)
chunks of memory available.

The DMA row references the first 16 MB on a system, the HighMem row references all memory greater
than 4 GB on a system, and the Normal row references all memory in between.

The following is an example of the output typical of /proc/buddyinfo:

Node 0, zone DMA 90 6 2 1 1 ...
Node 0, zone Normal 1650 310 5 0 0 ...
Node 0, zone HighMem 2 0 0 1 1 ...

5.2.3. /proc/cmdline
This file shows the parameters passed to the kernel at the time it is started. A sample /proc/cmdline
file looks like the following:

ro root=/dev/VolGroup00/LogVol00 rhgb quiet 3

44 Chapter 5. The proc File System

This tells us that the kernel is mounted read-only (signified by (ro)), located on the first logical
volume (LogVol00) of the first volume group (/dev/VolGroup00). LogVol00 is the equivalent of
a disk partition in a non-LVM system (Logical Volume Management), just as /dev/VolGroup00 is
similar in concept to /dev/hda1, but much more extensible.

For more information on LVM used in Red Hat Enterprise Linux, refer to
http://www.tldp.org/HOWTO/LVM-HOWTO/index.html.

Next, rhgb signals that the rhgb package has been installed, and graphical booting is supported,
assuming /etc/inittab shows a default runlevel set to id:5:initdefault:.

Finally, quiet indicates all verbose kernel messages are suppressed at boot time.

5.2.4. /proc/cpuinfo
This virtual file identifies the type of processor used by your system. The following is an example of
the output typical of /proc/cpuinfo:

processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) CPU 2.40GHz
stepping : 7
cpu MHz : 2392.371
cache size : 512 KB
physical id : 0
siblings : 2
runqueue : 0
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm
bogomips : 4771.02

• processor — Provides each processor with an identifying number. On systems that have one
processor, only a 0 is present.

• cpu family — Authoritatively identifies the type of processor in the system. For an Intel-based
system, place the number in front of "86" to determine the value. This is particularly helpful for
those attempting to identify the architecture of an older system such as a 586, 486, or 386. Because
some RPM packages are compiled for each of these particular architectures, this value also helps
users determine which packages to install.

• model name — Displays the common name of the processor, including its project name.

• cpu MHz — Shows the precise speed in megahertz for the processor to the thousandths decimal
place.

• cache size — Displays the amount of level 2 memory cache available to the processor.

Chapter 5. The proc File System 45

• siblings — Displays the number of sibling CPUs on the same physical CPU for architectures
which use hyper-threading.

• flags — Defines a number of different qualities about the processor, such as the presence of a
floating point unit (FPU) and the ability to process MMX instructions.

5.2.5. /proc/crypto
This file lists all installed cryptographic ciphers used by the Linux kernel, including additional details
for each. A sample /proc/crypto file looks like the following:

name : sha1
module : kernel
type : digest
blocksize : 64
digestsize : 20

name : md5
module : md5
type : digest
blocksize : 64
digestsize : 16

5.2.6. /proc/devices
This file displays the various character and block devices currently configured (not including devices
whose modules are not loaded). Below is a sample output from this file:

Character devices:
1 mem
4 /dev/vc/0
4 tty
4 ttyS
5 /dev/tty
5 /dev/console
5 /dev/ptmx
7 vcs

10 misc
13 input
29 fb
36 netlink
128 ptm
136 pts
180 usb

Block devices:
1 ramdisk
3 ide0
9 md

22 ide1
253 device-mapper
254 mdp

The output from /proc/devices includes the major number and name of the device, and is broken
into two major sections: Character devices and Block devices.

46 Chapter 5. The proc File System

Character devices are similar to block devices, except for two basic differences:

1. Character devices do not require buffering. Block devices have a buffer available, allowing
them to order requests before addressing them. This is important for devices designed to store
information — such as hard drives — because the ability to order the information before writing
it to the device allows it to be placed in a more efficient order.

2. Character devices send data with no preconfigured size. Block devices can send and receive
information in blocks of a size configured per device.

For more information about devices refer to the following installed documentation:

/usr/share/doc/kernel-doc-<version>/Documentation/devices.txt

5.2.7. /proc/dma
This file contains a list of the registered ISA DMA channels in use. A sample /proc/dma files looks
like the following:

4: cascade

5.2.8. /proc/execdomains
This file lists the execution domains currently supported by the Linux kernel, along with the range of
personalities they support.

0-0 Linux [kernel]

Think of execution domains as the "personality" for an operating system. Because other binary for-
mats, such as Solaris, UnixWare, and FreeBSD, can be used with Linux, programmers can change
the way the operating system treats system calls from these binaries by changing the personality of
the task. Except for the PER_LINUX execution domain, different personalities can be implemented as
dynamically loadable modules.

5.2.9. /proc/fb
This file contains a list of frame buffer devices, with the frame buffer device number and the driver
that controls it. Typical output of /proc/fb for systems which contain frame buffer devices looks
similar to the following:

0 VESA VGA

5.2.10. /proc/filesystems
This file displays a list of the file system types currently supported by the kernel. Sample output from
a generic /proc/filesystems file looks similar to the following:

nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs

Chapter 5. The proc File System 47

nodev binfmt_misc
nodev usbfs
nodev usbdevfs
nodev futexfs
nodev tmpfs
nodev pipefs
nodev eventpollfs
nodev devpts

ext2
nodev ramfs
nodev hugetlbfs

iso9660
nodev mqueue

ext3
nodev rpc_pipefs
nodev autofs

The first column signifies whether the file system is mounted on a block device. Those beginning with
nodev are not mounted on a device. The second column lists the names of the file systems supported.

The mount command cycles through the file systems listed here when one is not specified as an
argument.

5.2.11. /proc/interrupts
This file records the number of interrupts per IRQ on the x86 architecture. A standard
/proc/interrupts looks similar to the following:

CPU0
0: 80448940 XT-PIC timer
1: 174412 XT-PIC keyboard
2: 0 XT-PIC cascade
8: 1 XT-PIC rtc

10: 410964 XT-PIC eth0
12: 60330 XT-PIC PS/2 Mouse
14: 1314121 XT-PIC ide0
15: 5195422 XT-PIC ide1
NMI: 0
ERR: 0

For a multi-processor machine, this file may look slightly different:

CPU0 CPU1
0: 1366814704 0 XT-PIC timer
1: 128 340 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
8: 0 1 IO-APIC-edge rtc

12: 5323 5793 IO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
16: 11184294 15940594 IO-APIC-level Intel EtherExpress Pro 10/100 Ethernet
20: 8450043 11120093 IO-APIC-level megaraid
30: 10432 10722 IO-APIC-level aic7xxx
31: 23 22 IO-APIC-level aic7xxx
NMI: 0
ERR: 0

48 Chapter 5. The proc File System

The first column refers to the IRQ number. Each CPU in the system has its own column and its own
number of interrupts per IRQ. The next column reports the type of interrupt, and the last column
contains the name of the device that is located at that IRQ.

Each of the types of interrupts seen in this file, which are architecture-specific, mean something dif-
ferent. For x86 machines, the following values are common:

• XT-PIC — This is the old AT computer interrupts.

• IO-APIC-edge — The voltage signal on this interrupt transitions from low to high, creating an
edge, where the interrupt occurs and is only signaled once. This kind of interrupt, as well as the
IO-APIC-level interrupt, are only seen on systems with processors from the 586 family and
higher.

• IO-APIC-level — Generates interrupts when its voltage signal is high until the signal is low
again.

5.2.12. /proc/iomem
This file shows you the current map of the system’s memory for each physical device:

00000000-0009fbff : System RAM
0009fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7fff : Video ROM
000f0000-000fffff : System ROM
00100000-07ffffff : System RAM
00100000-00291ba8 : Kernel code
00291ba9-002e09cb : Kernel data

e0000000-e3ffffff : VIA Technologies, Inc. VT82C597 [Apollo VP3]
e4000000-e7ffffff : PCI Bus #01
e4000000-e4003fff : Matrox Graphics, Inc. MGA G200 AGP
e5000000-e57fffff : Matrox Graphics, Inc. MGA G200 AGP

e8000000-e8ffffff : PCI Bus #01
e8000000-e8ffffff : Matrox Graphics, Inc. MGA G200 AGP

ea000000-ea00007f : Digital Equipment Corporation DECchip 21140 [FasterNet]
ea000000-ea00007f : tulip

ffff0000-ffffffff : reserved

The first column displays the memory registers used by each of the different types of memory. The
second column lists the kind of memory located within those registers and displays which memory
registers are used by the kernel within the system RAM or, if the network interface card has multiple
Ethernet ports, the memory registers assigned for each port.

5.2.13. /proc/ioports
The output of /proc/ioports provides a list of currently registered port regions used for input or
output communication with a device. This file can be quite long. The following is a partial listing:

0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2

Chapter 5. The proc File System 49

00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
02f8-02ff : serial(auto)
0376-0376 : ide1
03c0-03df : vga+
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
d000-dfff : PCI Bus #01
e000-e00f : VIA Technologies, Inc. Bus Master IDE
e000-e007 : ide0
e008-e00f : ide1

e800-e87f : Digital Equipment Corporation DECchip 21140 [FasterNet]
e800-e87f : tulip

The first column gives the I/O port address range reserved for the device listed in the second column.

5.2.14. /proc/kcore
This file represents the physical memory of the system and is stored in the core file format. Unlike
most /proc/ files, kcore displays a size. This value is given in bytes and is equal to the size of the
physical memory (RAM) used plus 4 KB.

The contents of this file are designed to be examined by a debugger, such as gdb, and is not human
readable.

Caution

Do not view the /proc/kcore virtual file. The contents of the file scramble text output on the terminal.
If this file is accidentally viewed, press [Ctrl]-[C] to stop the process and then type reset to bring back
the command line prompt.

5.2.15. /proc/kmsg
This file is used to hold messages generated by the kernel. These messages are then picked up by other
programs, such as /sbin/klogd or /bin/dmesg.

5.2.16. /proc/loadavg
This file provides a look at the load average in regard to both the CPU and IO over time, as well as
additional data used by uptime and other commands. A sample /proc/loadavg file looks similar
to the following:

0.20 0.18 0.12 1/80 11206

The first three columns measure CPU and IO utilization of the last one, five, and 10 minute periods.
The fourth column shows the number of currently running processes and the total number of processes.
The last column displays the last process ID used.

50 Chapter 5. The proc File System

5.2.17. /proc/locks
This file displays the files currently locked by the kernel. The contents of this file contain internal
kernel debugging data and can vary tremendously, depending on the use of the system. A sample
/proc/locks file for a lightly loaded system looks similar to the following:

1: POSIX ADVISORY WRITE 3568 fd:00:2531452 0 EOF
2: FLOCK ADVISORY WRITE 3517 fd:00:2531448 0 EOF
3: POSIX ADVISORY WRITE 3452 fd:00:2531442 0 EOF
4: POSIX ADVISORY WRITE 3443 fd:00:2531440 0 EOF
5: POSIX ADVISORY WRITE 3326 fd:00:2531430 0 EOF
6: POSIX ADVISORY WRITE 3175 fd:00:2531425 0 EOF
7: POSIX ADVISORY WRITE 3056 fd:00:2548663 0 EOF

Each lock has its own line which starts with a unique number. The second column refers to the class
of lock used, with FLOCK signifying the older-style UNIX file locks from a flock system call and
POSIX representing the newer POSIX locks from the lockf system call.

The third column can have two values: ADVISORY or MANDATORY. ADVISORYmeans that the lock does
not prevent other people from accessing the data; it only prevents other attempts to lock it. MANDATORY
means that no other access to the data is permitted while the lock is held. The fourth column reveals
whether the lock is allowing the holder READ or WRITE access to the file. The fifth column shows the
ID of the process holding the lock. The sixth column shows the ID of the file being locked, in the
format of MAJOR-DEVICE:MINOR-DEVICE:INODE-NUMBER. The seventh and eighth column shows
the start and end of the file’s locked region.

5.2.18. /proc/mdstat
This file contains the current information for multiple-disk, RAID configurations. If the system does
not contain such a configuration, then /proc/mdstat looks similar to the following:

Personalities :
read_ahead not set
unused devices: <none>

This file remains in the same state as seen above unless a software RAID or md device is present. In
that case, view /proc/mdstat to find the current status of mdX RAID devices.

The /proc/mdstat file below shows a system with its md0 configured as a RAID 1 device, while it
is currently re-syncing the disks:

Personalities : [linear] [raid1]
read_ahead 1024 sectors
md0: active raid1 sda2[1] sdb2[0] 9940 blocks [2/2] [UU] resync=1% finish=12.3min
algorithm 2 [3/3] [UUU]
unused devices: <none>

5.2.19. /proc/meminfo
This is one of the more commonly used files in the /proc/ directory, as it reports a large amount of
valuable information about the systems RAM usage.

The following sample /proc/meminfo virtual file is from a system with 256 MB of RAM and 512
MB of swap space:

MemTotal: 255908 kB

Chapter 5. The proc File System 51

MemFree: 69936 kB
Buffers: 15812 kB
Cached: 115124 kB
SwapCached: 0 kB
Active: 92700 kB
Inactive: 63792 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 255908 kB
LowFree: 69936 kB
SwapTotal: 524280 kB
SwapFree: 524280 kB
Dirty: 4 kB
Writeback: 0 kB
Mapped: 42236 kB
Slab: 25912 kB
Committed_AS: 118680 kB
PageTables: 1236 kB
VmallocTotal: 3874808 kB
VmallocUsed: 1416 kB
VmallocChunk: 3872908 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 4096 kB

Much of the information here is used by the free, top, and ps commands. In fact, the output of the
free command is similar in appearance to the contents and structure of /proc/meminfo. But by
looking directly at /proc/meminfo, more details are revealed:

• MemTotal — Total amount of physical RAM, in kilobytes.

• MemFree — The amount of physical RAM, in kilobytes, left unused by the system.

• Buffers — The amount of physical RAM, in kilobytes, used for file buffers.

• Cached — The amount of physical RAM, in kilobytes, used as cache memory.

• SwapCached — The amount of swap, in kilobytes, used as cache memory.

• Active — The total amount of buffer or page cache memory, in kilobytes, that is in active use.
This is memory that has been recently used and is usually not reclaimed for other purposes.

• Inactive — The total amount of buffer or page cache memory, in kilobytes, that are free and
available. This is memory that has not been recently used and can be reclaimed for other purposes.

• HighTotal and HighFree — The total and free amount of memory, in kilobytes, that is not
directly mapped into kernel space. The HighTotal value can vary based on the type of kernel
used.

• LowTotal and LowFree — The total and free amount of memory, in kilobytes, that is directly
mapped into kernel space. The LowTotal value can vary based on the type of kernel used.

• SwapTotal — The total amount of swap available, in kilobytes.

• SwapFree — The total amount of swap free, in kilobytes.

• Dirty — The total amount of memory, in kilobytes, waiting to be written back to the disk.

• Writeback — The total amount of memory, in kilobytes, actively being written back to the disk.

• Mapped — The total amount of memory, in kilobytes, which have been used to map devices, files,
or libraries using the mmap command.

• Slab — The total amount of memory, in kilobytes, used by the kernel to cache data structures for
its own use.

52 Chapter 5. The proc File System

• Committed_AS — The total amount of memory, in kilobytes, estimated to complete the workload.
This value represents the worst case scenario value, and also includes swap memory.

• PageTables— The total amount of memory, in kilobytes, dedicated to the lowest page table level.

• VMallocTotal — The total amount of memory, in kilobytes, of total allocated virtual address
space.

• VMallocUsed — The total amount of memory, in kilobytes, of used virtual address space.

• VMallocChunk — The largest contiguous block of memory, in kilobytes, of available virtual ad-
dress space.

• HugePages_Total — The total number of hugepages for the system. The number is
derived by dividing Hugepagesize by the megabytes set aside for hugepages specified in
/proc/sys/vm/hugetlb_pool. This statistic only appears on the x86, Itanium, and AMD64
architectures.

• HugePages_Free — The total number of hugepages available for the system. This statistic only
appears on the x86, Itanium, and AMD64 architectures.

• Hugepagesize — The size for each hugepages unit in kilobytes. By default, the value is 4096
KB on uniprocessor kernels for 32 bit architectures. For SMP, hugemem kernels, and AMD64, the
default is 2048 KB. For Itanium architectures, the default is 262144 KB. This statistic only appears
on the x86, Itanium, and AMD64 architectures.

5.2.20. /proc/misc
This file lists miscellaneous drivers registered on the miscellaneous major device, which is device
number 10:

63 device-mapper
175 agpgart
135 rtc
134 apm_bios

The first column is the minor number of each device, while the second column shows the driver in
use.

5.2.21. /proc/modules
This file displays a list of all modules loaded into the kernel. Its contents vary based on the con-
figuration and use of your system, but it should be organized in a similar manner to this sample
/proc/modules file output:

Note

This example has been reformatted into a readable format. Most of this information can also be
viewed via the /sbin/lsmod command.

nfs 170109 0 - Live 0x129b0000
lockd 51593 1 nfs, Live 0x128b0000
nls_utf8 1729 0 - Live 0x12830000
vfat 12097 0 - Live 0x12823000
fat 38881 1 vfat, Live 0x1287b000

Chapter 5. The proc File System 53

autofs4 20293 2 - Live 0x1284f000
sunrpc 140453 3 nfs,lockd, Live 0x12954000
3c59x 33257 0 - Live 0x12871000
uhci_hcd 28377 0 - Live 0x12869000
md5 3777 1 - Live 0x1282c000
ipv6 211845 16 - Live 0x128de000
ext3 92585 2 - Live 0x12886000
jbd 65625 1 ext3, Live 0x12857000
dm_mod 46677 3 - Live 0x12833000

The first column contains the name of the module.

The second column refers to the memory size of the module, in bytes.

The third column lists how many instances of the module are currently loaded. A value of zero repre-
sents an unloaded module.

The fourth column states if the module depends upon another module to be present in order to func-
tion, and lists those other modules.

The fifth column lists what load state the module is in: Live, Loading, or Unloading are the only
possible values.

The sixth column lists the current kernel memory offset for the loaded module. This information can
be useful for debugging purposes, or for profiling tools such as oprofile.

5.2.22. /proc/mounts
This file provides a list of all mounts in use by the system:

rootfs / rootfs rw 0 0
/proc /proc proc rw,nodiratime 0 0
none /dev ramfs rw 0 0
/dev/mapper/VolGroup00-LogVol00 / ext3 rw 0 0
none /dev ramfs rw 0 0
/proc /proc proc rw,nodiratime 0 0
/sys /sys sysfs rw 0 0
none /dev/pts devpts rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext3 rw 0 0
none /dev/shm tmpfs rw 0 0
none /proc/sys/fs/binfmt_misc binfmt_misc rw 0 0
sunrpc /var/lib/nfs/rpc_pipefs rpc_pipefs rw 0 0

The output found here is similar to the contents of /etc/mtab, except that /proc/mount is more
up-to-date.

The first column specifies the device that is mounted, the second column reveals the mount point, and
the third column tells the file system type, and the fourth column tells you if it is mounted read-only
(ro) or read-write (rw). The fifth and sixth columns are dummy values designed to match the format
used in /etc/mtab.

5.2.23. /proc/mtrr
This file refers to the current Memory Type Range Registers (MTRRs) in use with the system. If the
system architecture supports MTRRs, then the /proc/mtrr file may look similar to the following:

reg00: base=0x00000000 (0MB), size= 256MB: write-back, count=1

54 Chapter 5. The proc File System

reg01: base=0xe8000000 (3712MB), size= 32MB: write-combining, count=1

MTRRs are used with the Intel P6 family of processors (Pentium II and higher) and control processor
access to memory ranges. When using a video card on a PCI or AGP bus, a properly configured
/proc/mtrr file can increase performance more than 150%.

Most of the time, this value is properly configured by default. More information on manually config-
uring this file can be found locally at the following location:

/usr/share/doc/kernel-doc-<version>/Documentation/mtrr.txt

5.2.24. /proc/partitions
This file contains partition block allocation information. A sampling of this file from a basic system
looks similar to the following:

major minor #blocks name

3 0 19531250 hda
3 1 104391 hda1
3 2 19422585 hda2

253 0 22708224 dm-0
253 1 524288 dm-1

Most of the information here is of little importance to the user, except for the following columns:

• major — The major number of the device with this partition. The major number in the
/proc/partitions, (3), corresponds with the block device ide0, in /proc/devices.

• minor — The minor number of the device with this partition. This serves to separate the partitions
into different physical devices and relates to the number at the end of the name of the partition.

• #blocks — Lists the number of physical disk blocks contained in a particular partition.

• name — The name of the partition.

5.2.25. /proc/pci
This file contains a full listing of every PCI device on the system. Depending on the number of PCI
devices, /proc/pci can be rather long. A sampling of this file from a basic system looks similar to
the following:

Bus 0, device 0, function 0:
Host bridge: Intel Corporation 440BX/ZX - 82443BX/ZX Host bridge (rev 3).
Master Capable. Latency=64.
Prefetchable 32 bit memory at 0xe4000000 [0xe7ffffff].

Bus 0, device 1, function 0:
PCI bridge: Intel Corporation 440BX/ZX - 82443BX/ZX AGP bridge (rev 3).
Master Capable. Latency=64. Min Gnt=128.

Bus 0, device 4, function 0:
ISA bridge: Intel Corporation 82371AB PIIX4 ISA (rev 2).

Bus 0, device 4, function 1:
IDE interface: Intel Corporation 82371AB PIIX4 IDE (rev 1).
Master Capable. Latency=32.
I/O at 0xd800 [0xd80f].

Bus 0, device 4, function 2:
USB Controller: Intel Corporation 82371AB PIIX4 USB (rev 1).

Chapter 5. The proc File System 55

IRQ 5.
Master Capable. Latency=32.
I/O at 0xd400 [0xd41f].

Bus 0, device 4, function 3:
Bridge: Intel Corporation 82371AB PIIX4 ACPI (rev 2).
IRQ 9.

Bus 0, device 9, function 0:
Ethernet controller: Lite-On Communications Inc LNE100TX (rev 33).
IRQ 5.
Master Capable. Latency=32.
I/O at 0xd000 [0xd0ff].
Non-prefetchable 32 bit memory at 0xe3000000 [0xe30000ff].

Bus 0, device 12, function 0:
VGA compatible controller: S3 Inc. ViRGE/DX or /GX (rev 1).
IRQ 11.
Master Capable. Latency=32. Min Gnt=4.Max Lat=255.
Non-prefetchable 32 bit memory at 0xdc000000 [0xdfffffff].

This output shows a list of all PCI devices, sorted in the order of bus, device, and function. Beyond
providing the name and version of the device, this list also gives detailed IRQ information so an
administrator can quickly look for conflicts.

Tip

To get a more readable version of this information, type:

/sbin/lspci -vb

5.2.26. /proc/slabinfo
This file gives full information about memory usage on the slab level. Linux kernels greater than
version 2.2 use slab pools to manage memory above the page level. Commonly used objects have
their own slab pools.

Instead of parsing the highly verbose /proc/slabinfo file manually, the /usr/bin/slabtop pro-
gram displays kernel slab cache information in real time. This program allows for custom configura-
tions, including column sorting and screen refreshing.

A sample screen shot of /usr/bin/slabtop usually looks like the following example:

Active / Total Objects (% used) : 133629 / 147300 (90.7%)
Active / Total Slabs (% used) : 11492 / 11493 (100.0%)
Active / Total Caches (% used) : 77 / 121 (63.6%)
Active / Total Size (% used) : 41739.83K / 44081.89K (94.7%)
Minimum / Average / Maximum Object : 0.01K / 0.30K / 128.00K

OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
44814 43159 96% 0.62K 7469 6 29876K ext3_inode_cache
36900 34614 93% 0.05K 492 75 1968K buffer_head
35213 33124 94% 0.16K 1531 23 6124K dentry_cache
7364 6463 87% 0.27K 526 14 2104K radix_tree_node
2585 1781 68% 0.08K 55 47 220K vm_area_struct
2263 2116 93% 0.12K 73 31 292K size-128
1904 1125 59% 0.03K 16 119 64K size-32

56 Chapter 5. The proc File System

1666 768 46% 0.03K 14 119 56K anon_vma
1512 1482 98% 0.44K 168 9 672K inode_cache
1464 1040 71% 0.06K 24 61 96K size-64
1320 820 62% 0.19K 66 20 264K filp
678 587 86% 0.02K 3 226 12K dm_io
678 587 86% 0.02K 3 226 12K dm_tio
576 574 99% 0.47K 72 8 288K proc_inode_cache
528 514 97% 0.50K 66 8 264K size-512
492 372 75% 0.09K 12 41 48K bio
465 314 67% 0.25K 31 15 124K size-256
452 331 73% 0.02K 2 226 8K biovec-1
420 420 100% 0.19K 21 20 84K skbuff_head_cache
305 256 83% 0.06K 5 61 20K biovec-4
290 4 1% 0.01K 1 290 4K revoke_table
264 264 100% 4.00K 264 1 1056K size-4096
260 256 98% 0.19K 13 20 52K biovec-16
260 256 98% 0.75K 52 5 208K biovec-64

Some of the more commonly used statistics in /proc/slabinfo that are included into
/usr/bin/slabtop include:

• OBJS — The total number of objects (memory blocks), including those in use (allocated), and some
spares not in use.

• ACTIVE — The number of objects (memory blocks) that are in use (allocated).

• USE — Percentage of total objects that are active. ((ACTIVE/OBJS)(100))

• OBJ SIZE — The size of the objects.

• SLABS — The total number of slabs.

• OBJ/SLAB — The number of objects that fit into a slab.

• CACHE SIZE — The cache size of the slab.

• NAME — The name of the slab.

For more information on the /usr/bin/slabtop program, refer to the slabtop man page.

5.2.27. /proc/stat
This file keeps track of a variety of different statistics about the system since it was last restarted. The
contents of /proc/stat, which can be quite long, usually begins like the following example:

cpu 259246 7001 60190 34250993 137517 772 0
cpu0 259246 7001 60190 34250993 137517 772 0
intr 354133732 347209999 2272 0 4 4 0 0 3 1 1249247 0 0 80143 0 422626 5169433
ctxt 12547729
btime 1093631447
processes 130523
procs_running 1
procs_blocked 0
preempt 5651840

cpu 209841 1554 21720 118519346 72939 154 27168
cpu0 42536 798 4841 14790880 14778 124 3117
cpu1 24184 569 3875 14794524 30209 29 3130
cpu2 28616 11 2182 14818198 4020 1 3493
cpu3 35350 6 2942 14811519 3045 0 3659

Chapter 5. The proc File System 57

cpu4 18209 135 2263 14820076 12465 0 3373
cpu5 20795 35 1866 14825701 4508 0 3615
cpu6 21607 0 2201 14827053 2325 0 3334
cpu7 18544 0 1550 14831395 1589 0 3447
intr 15239682 14857833 6 0 6 6 0 5 0 1 0 0 0 29 0 2 0 0 0 0 0 0 0 94982 0 286812
ctxt 4209609
btime 1078711415
processes 21905
procs_running 1
procs_blocked 0

Some of the more commonly used statistics include:

• cpu — Measures the number of jiffies (1/100 of a second for x86 systems) that the system has been
in user mode, user mode with low priority (nice), system mode, idle task, I/O wait, IRQ (hardirq),
and softirq respectively. The IRQ (hardirq) is the direct response to a hardware event. The IRQ
takes minimal work for queuing the "heavy" work up for the softirq to execute. The softirq runs
at a lower priority than the IRQ and therefore may be interrupted more frequently. The total for
all CPUs is given at the top, while each individual CPU is listed below with its own statistics.
The following example is a 4-way Intel Pentium Xeon configuration with multi-threading enabled,
therefore showing four physical processors and four virtual processors totaling eight processors.

• page — The number of memory pages the system has written in and out to disk.

• swap — The number of swap pages the system has brought in and out.

• intr — The number of interrupts the system has experienced.

• btime — The boot time, measured in the number of seconds since January 1, 1970, otherwise
known as the epoch.

5.2.28. /proc/swaps
This file measures swap space and its utilization. For a system with only one swap partition, the output
of /proc/swap may look similar to the following:

Filename Type Size Used Priority
/dev/mapper/VolGroup00-LogVol01 partition 524280 0 -1

While some of this information can be found in other files in the /proc/ directory, /proc/swap
provides a snapshot of every swap file name, the type of swap space, the total size, and the amount
of space in use (in kilobytes). The priority column is useful when multiple swap files are in use. The
lower the priority, the more likely the swap file is to be used.

5.2.29. /proc/sysrq-trigger
Using the echo command to write to this file, a remote root user can execute most System
Request Key commands remotely as if at the local terminal. To echo values to this file, the
/proc/sys/kernel/sysrq must be set to a value other than 0. For more information about the
System Request Key, refer to Section 5.3.9.3 /proc/sys/kernel/.

Although it is possible to write to this file, it cannot be read, even by the root user.

58 Chapter 5. The proc File System

5.2.30. /proc/uptime
This file contains information detailing how long the system has been on since its last restart. The
output of /proc/uptime is quite minimal:

350735.47 234388.90

The first number is the total number of seconds the system has been up. The second number is how
much of that time the machine has spent idle, in seconds.

5.2.31. /proc/version
This file specifies the version of the Linux kernel and gcc in use, as well as the version of Red Hat
Enterprise Linux installed on the system:

Linux version 2.6.8-1.523 (user@foo.redhat.com) (gcc version 3.4.1 20040714 \
(Red Hat Enterprise Linux 3.4.1-7)) #1 Mon Aug 16 13:27:03 EDT 2004

This information is used for a variety of purposes, including the version data presented when a user
logs in.

5.3. Directories within /proc/
Common groups of information concerning the kernel are grouped into directories and subdirectories
within the /proc/ directory.

5.3.1. Process Directories
Every /proc/ directory contains a number of directories with numerical names. A listing of them
may be similar to the following:

dr-xr-xr-x 3 root root 0 Feb 13 01:28 1
dr-xr-xr-x 3 root root 0 Feb 13 01:28 1010
dr-xr-xr-x 3 xfs xfs 0 Feb 13 01:28 1087
dr-xr-xr-x 3 daemon daemon 0 Feb 13 01:28 1123
dr-xr-xr-x 3 root root 0 Feb 13 01:28 11307
dr-xr-xr-x 3 apache apache 0 Feb 13 01:28 13660
dr-xr-xr-x 3 rpc rpc 0 Feb 13 01:28 637
dr-xr-xr-x 3 rpcuser rpcuser 0 Feb 13 01:28 666

These directories are called process directories, as they are named after a program’s process ID and
contain information specific to that process. The owner and group of each process directory is set to
the user running the process. When the process is terminated, its /proc/ process directory vanishes.

Each process directory contains the following files:

• cmdline — Contains the command issued when starting the process.

• cwd — A symbolic link to the current working directory for the process.

• environ — A list of the environment variables for the process. The environment variable is given
in all upper-case characters, and the value is in lower-case characters.

• exe — A symbolic link to the executable of this process.

Chapter 5. The proc File System 59

• fd — A directory containing all of the file descriptors for a particular process. These are given in
numbered links:
total 0
lrwx------ 1 root root 64 May 8 11:31 0 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 1 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 2 -> /dev/null
lrwx------ 1 root root 64 May 8 11:31 3 -> /dev/ptmx
lrwx------ 1 root root 64 May 8 11:31 4 -> socket:[7774817]
lrwx------ 1 root root 64 May 8 11:31 5 -> /dev/ptmx
lrwx------ 1 root root 64 May 8 11:31 6 -> socket:[7774829]
lrwx------ 1 root root 64 May 8 11:31 7 -> /dev/ptmx

• maps — A list of memory maps to the various executables and library files associated with this
process. This file can be rather long, depending upon the complexity of the process, but sample
output from the sshd process begins like the following:
08048000-08086000 r-xp 00000000 03:03 391479 /usr/sbin/sshd
08086000-08088000 rw-p 0003e000 03:03 391479 /usr/sbin/sshd
08088000-08095000 rwxp 00000000 00:00 0
40000000-40013000 r-xp 00000000 03:03 293205 /lib/ld-2.2.5.so
40013000-40014000 rw-p 00013000 03:03 293205 /lib/ld-2.2.5.so
40031000-40038000 r-xp 00000000 03:03 293282 /lib/libpam.so.0.75
40038000-40039000 rw-p 00006000 03:03 293282 /lib/libpam.so.0.75
40039000-4003a000 rw-p 00000000 00:00 0
4003a000-4003c000 r-xp 00000000 03:03 293218 /lib/libdl-2.2.5.so
4003c000-4003d000 rw-p 00001000 03:03 293218 /lib/libdl-2.2.5.so

• mem — The memory held by the process. This file cannot be read by the user.

• root — A link to the root directory of the process.

• stat — The status of the process.

• statm — The status of the memory in use by the process. Below is a sample /proc/statm file:
263 210 210 5 0 205 0

The seven columns relate to different memory statistics for the process. From left to right, they
report the following aspects of the memory used:

1. Total program size, in kilobytes.

2. Size of memory portions, in kilobytes.

3. Number of pages that are shared.

4. Number of pages that are code.

5. Number of pages of data/stack.

6. Number of library pages.

7. Number of dirty pages.

• status — The status of the process in a more readable form than stat or statm. Sample output
for sshd looks similar to the following:
Name: sshd
State: S (sleeping)
Tgid: 797
Pid: 797
PPid: 1
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups:

60 Chapter 5. The proc File System

VmSize: 3072 kB
VmLck: 0 kB
VmRSS: 840 kB
VmData: 104 kB
VmStk: 12 kB
VmExe: 300 kB
VmLib: 2528 kB
SigPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 8000000000001000
SigCgt: 0000000000014005
CapInh: 0000000000000000
CapPrm: 00000000fffffeff
CapEff: 00000000fffffeff

The information in this output includes the process name and ID, the state (such as S (sleeping)
or R (running)), user/group ID running the process, and detailed data regarding memory usage.

5.3.1.1. /proc/self/
The /proc/self/ directory is a link to the currently running process. This allows a process to look
at itself without having to know its process ID.

Within a shell environment, a listing of the /proc/self/ directory produces the same contents as
listing the process directory for that process.

5.3.2. /proc/bus/
This directory contains information specific to the various buses available on the system. For example,
on a standard system containing PCI and USB buses, current data on each of these buses is available
within a subdirectory within /proc/bus/ by the same name, such as /proc/bus/pci/.

The subdirectories and files available within /proc/bus/ vary depending on the devices connected
to the system. However, each bus type has at least one directory. Within these bus directories are
normally at least one subdirectory with a numerical name, such as 001, which contain binary files.

For example, the /proc/bus/usb/ subdirectory contains files that track the various devices on
any USB buses, as well as the drivers required for them. The following is a sample listing of a
/proc/bus/usb/ directory:

total 0
dr-xr-xr-x 1 root root 0 May 3 16:25 001
-r--r--r-- 1 root root 0 May 3 16:25 devices
-r--r--r-- 1 root root 0 May 3 16:25 drivers

The /proc/bus/usb/001/ directory contains all devices on the first USB bus and the devices file
identifies the USB root hub on the motherboard.

The following is a example of a /proc/bus/usb/devices file:

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=d400
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub

Chapter 5. The proc File System 61

E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

5.3.3. /proc/driver/
This directory contains information for specific drivers in use by the kernel.

A common file found here is rtc which provides output from the driver for the system’s Real Time
Clock (RTC), the device that keeps the time while the system is switched off. Sample output from
/proc/driver/rtc looks like the following:

rtc_time : 16:21:00
rtc_date : 2004-08-31
rtc_epoch : 1900
alarm : 21:16:27
DST_enable : no
BCD : yes
24hr : yes
square_wave : no
alarm_IRQ : no
update_IRQ : no
periodic_IRQ : no
periodic_freq : 1024
batt_status : okay

For more information about the RTC, refer to the following installed documentation:

/usr/share/doc/kernel-doc-<version>/Documentation/rtc.txt.

5.3.4. /proc/fs
This directory shows which file systems are exported. If running an NFS server, typing cat
/proc/fs/nfsd/exports displays the file systems being shared and the permissions
granted for those file systems. For more on file system sharing with NFS, refer to
Chapter 9 Network File System (NFS).

5.3.5. /proc/ide/
This directory contains information about IDE devices on the system. Each IDE channel is represented
as a separate directory, such as /proc/ide/ide0 and /proc/ide/ide1. In addition, a drivers file
is available, providing the version number of the various drivers used on the IDE channels:

ide-floppy version 0.99.newide
ide-cdrom version 4.61
ide-disk version 1.18

Many chipsets also provide a file in this directory with additional data concerning the drives
connected through the channels. For example, a generic Intel PIIX4 Ultra 33 chipset produces the
/proc/ide/piix file which reveals whether DMA or UDMA is enabled for the devices on the IDE
channels:

Intel PIIX4 Ultra 33 Chipset.
------------- Primary Channel ---------------- Secondary Channel -------------

62 Chapter 5. The proc File System

enabled enabled
------------- drive0 --------- drive1 -------- drive0 ---------- drive1 ------
DMA enabled: yes no yes no
UDMA enabled: yes no no no
UDMA enabled: 2 X X X
UDMA
DMA
PIO

Navigating into the directory for an IDE channel, such as ide0, provides additional information. The
channel file provides the channel number, while the model identifies the bus type for the channel
(such as pci).

5.3.5.1. Device Directories
Within each IDE channel directory is a device directory. The name of the device directory corresponds
to the drive letter in the /dev/ directory. For instance, the first IDE drive on ide0 would be hda.

Note

There is a symbolic link to each of these device directories in the /proc/ide/ directory.

Each device directory contains a collection of information and statistics. The contents of these direc-
tories vary according to the type of device connected. Some of the more useful files common to many
devices include:

• cache — The device cache.

• capacity — The capacity of the device, in 512 byte blocks.

• driver — The driver and version used to control the device.

• geometry — The physical and logical geometry of the device.

• media — The type of device, such as a disk.

• model — The model name or number of the device.

• settings — A collection of current device parameters. This file usually contains quite a bit of
useful, technical information. A sample settings file for a standard IDE hard disk looks similar
to the following:
name value min max mode
---- ----- --- --- ----
acoustic 0 0 254 rw
address 0 0 2 rw
bios_cyl 38752 0 65535 rw
bios_head 16 0 255 rw
bios_sect 63 0 63 rw
bswap 0 0 1 r
current_speed 68 0 70 rw
failures 0 0 65535 rw
init_speed 68 0 70 rw
io_32bit 0 0 3 rw
keepsettings 0 0 1 rw
lun 0 0 7 rw
max_failures 1 0 65535 rw
multcount 16 0 16 rw

Chapter 5. The proc File System 63

nice1 1 0 1 rw
nowerr 0 0 1 rw
number 0 0 3 rw
pio_mode write-only 0 255 w
unmaskirq 0 0 1 rw
using_dma 1 0 1 rw
wcache 1 0 1 rw

5.3.6. /proc/irq/
This directory is used to set IRQ to CPU affinity, which allows the system to connect a particular IRQ
to only one CPU. Alternatively, it can exclude a CPU from handling any IRQs.

Each IRQ has its own directory, allowing for the individual configuration of each IRQ.
The /proc/irq/prof_cpu_mask file is a bitmask that contains the default values for the
smp_affinity file in the IRQ directory. The values in smp_affinity specify which CPUs handle
that particular IRQ.

For more information about the /proc/irq/ directory, refer to the following installed documenta-
tion:

/usr/share/doc/kernel-doc-<version>/Documentation/filesystems/proc.txt

5.3.7. /proc/net/
This directory provides a comprehensive look at various networking parameters and statistics. Each
directory and virtual file within this directory describes aspects of the system’s network configuration.
Below is a partial list of the /proc/net/ directory:

• arp — Lists the kernel’s ARP table. This file is particularly useful for connecting a hardware
address to an IP address on a system.

• atm/ directory — The files within this directory contain Asynchronous Transfer Mode (ATM) set-
tings and statistics. This directory is primarily used with ATM networking and ADSL cards.

• dev — Lists the various network devices configured on the system, complete with transmit and re-
ceive statistics. This file displays the number of bytes each interface has sent and received, the num-
ber of packets inbound and outbound, the number of errors seen, the number of packets dropped,
and more.

• dev_mcast — Lists Layer2 multicast groups on which each device is listening.

• igmp — Lists the IP multicast addresses which this system joined.

• ip_conntrack — Lists tracked network connections for machines that are forwarding IP connec-
tions.

• ip_tables_names — Lists the types of iptables in use. This file is only present if iptables
is active on the system and contains one or more of the following values: filter, mangle, or nat.

• ip_mr_cache — Lists the multicast routing cache.

• ip_mr_vif — Lists multicast virtual interfaces.

• netstat — Contains a broad yet detailed collection of networking statistics, including TCP time-
outs, SYN cookies sent and received, and much more.

• psched — Lists global packet scheduler parameters.

• raw — Lists raw device statistics.

64 Chapter 5. The proc File System

• route — Lists the kernel’s routing table.

• rt_cache — Contains the current routing cache.

• snmp — List of Simple Network Management Protocol (SNMP) data for various networking pro-
tocols in use.

• sockstat — Provides socket statistics.

• tcp — Contains detailed TCP socket information.

• tr_rif — Lists the token ring RIF routing table.

• udp — Contains detailed UDP socket information.

• unix — Lists UNIX domain sockets currently in use.

• wireless — Lists wireless interface data.

5.3.8. /proc/scsi/
This directory is analogous to the /proc/ide/ directory, but it is for connected SCSI devices.

The primary file in this directory is /proc/scsi/scsi, which contains a list of every recognized
SCSI device. From this listing, the type of device, as well as the model name, vendor, SCSI channel
and ID data is available.

For example, if a system contains a SCSI CD-ROM, a tape drive, a hard drive, and a RAID controller,
this file looks similar to the following:

Attached devices:
Host: scsi1 Channel: 00 Id: 05 Lun: 00
Vendor: NEC Model: CD-ROM DRIVE:466 Rev: 1.06
Type: CD-ROM ANSI SCSI revision: 02

Host: scsi1 Channel: 00 Id: 06 Lun: 00
Vendor: ARCHIVE Model: Python 04106-XXX Rev: 7350
Type: Sequential-Access ANSI SCSI revision: 02

Host: scsi2 Channel: 00 Id: 06 Lun: 00
Vendor: DELL Model: 1x6 U2W SCSI BP Rev: 5.35
Type: Processor ANSI SCSI revision: 02

Host: scsi2 Channel: 02 Id: 00 Lun: 00
Vendor: MegaRAID Model: LD0 RAID5 34556R Rev: 1.01
Type: Direct-Access ANSI SCSI revision: 02

Each SCSI driver used by the system has its own directory within /proc/scsi/, which contains
files specific to each SCSI controller using that driver. From the previous example, aic7xxx/ and
megaraid/ directories are present, since two drivers are in use. The files in each of the directories
typically contain an I/O address range, IRQ information, and statistics for the SCSI controller using
that driver. Each controller can report a different type and amount of information. The Adaptec AIC-
7880 Ultra SCSI host adapter’s file in this example system produces the following output:

Adaptec AIC7xxx driver version: 5.1.20/3.2.4
Compile Options:
TCQ Enabled By Default : Disabled
AIC7XXX_PROC_STATS : Enabled
AIC7XXX_RESET_DELAY : 5

Adapter Configuration:
SCSI Adapter: Adaptec AIC-7880 Ultra SCSI host adapter

Ultra Narrow Controller
PCI MMAPed I/O Base: 0xfcffe000

Chapter 5. The proc File System 65

Adapter SEEPROM Config: SEEPROM found and used.
Adaptec SCSI BIOS: Enabled

IRQ: 30
SCBs: Active 0, Max Active 1,

Allocated 15, HW 16, Page 255
Interrupts: 33726

BIOS Control Word: 0x18a6
Adapter Control Word: 0x1c5f
Extended Translation: Enabled

Disconnect Enable Flags: 0x00ff
Ultra Enable Flags: 0x0020

Tag Queue Enable Flags: 0x0000
Ordered Queue Tag Flags: 0x0000
Default Tag Queue Depth: 8

Tagged Queue By Device array for aic7xxx host instance 1:
{255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}

Actual queue depth per device for aic7xxx host instance 1:
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

Statistics:

(scsi1:0:5:0)
Device using Narrow/Sync transfers at 20.0 MByte/sec, offset 15
Transinfo settings: current(12/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 0 (0 reads and 0 writes)

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+
Reads: 0 0 0 0 0 0 0 0
Writes: 0 0 0 0 0 0 0 0

(scsi1:0:6:0)
Device using Narrow/Sync transfers at 10.0 MByte/sec, offset 15
Transinfo settings: current(25/15/0/0), goal(12/15/0/0), user(12/15/0/0)
Total transfers 132 (0 reads and 132 writes)

< 2K 2K+ 4K+ 8K+ 16K+ 32K+ 64K+ 128K+
Reads: 0 0 0 0 0 0 0 0
Writes: 0 0 0 1 131 0 0 0

This output reveals the transfer speed to the SCSI devices connected to the controller based on channel
ID, as well as detailed statistics concerning the amount and sizes of files read or written by that device.
For example, this controller is communicating with the CD-ROM at 20 megabytes per second, while
the tape drive is only communicating at 10 megabytes per second.

5.3.9. /proc/sys/
The /proc/sys/ directory is different from others in /proc/ because it not only provides infor-
mation about the system but also allows the system administrator to immediately enable and disable
kernel features.

66 Chapter 5. The proc File System

Caution

Use caution when changing settings on a production system using the various files in the /proc/sys/
directory. Changing the wrong setting may render the kernel unstable, requiring a system reboot.

For this reason, be sure the options are valid for that file before attempting to change any value in
/proc/sys/.

A good way to determine if a particular file can be configured, or if it is only designed to provide
information, is to list it with the -l option at the shell prompt. If the file is writable, it may be used to
configure the kernel. For example, a partial listing of /proc/sys/fs looks like the following:

-r--r--r-- 1 root root 0 May 10 16:14 dentry-state
-rw-r--r-- 1 root root 0 May 10 16:14 dir-notify-enable
-r--r--r-- 1 root root 0 May 10 16:14 dquot-nr
-rw-r--r-- 1 root root 0 May 10 16:14 file-max
-r--r--r-- 1 root root 0 May 10 16:14 file-nr

In this listing, the files dir-notify-enable and file-max can be written to and, therefore, can be
used to configure the kernel. The other files only provide feedback on current settings.

Changing a value within a /proc/sys/ file is done by echoing the new value into the file. For
example, to enable the System Request Key on a running kernel, type the command:

echo 1 > /proc/sys/kernel/sysrq

This changes the value for sysrq from 0 (off) to 1 (on).

A few /proc/sys/ configuration files contain more than one value. To correctly send new values to
them, place a space character between each value passed with the echo command, such as is done in
this example:

echo 4 2 45 > /proc/sys/kernel/acct

Note

Any configuration changes made using the echo command disappear when the system is
restarted. To make configuration changes take effect after the system is rebooted, refer to
Section 5.4 Using the sysctl Command .

The /proc/sys/ directory contains several subdirectories controlling different aspects of a running
kernel.

5.3.9.1. /proc/sys/dev/
This directory provides parameters for particular devices on the system. Most systems have at least two
directories, cdrom/ and raid/. Customized kernels can have other directories, such as parport/,
which provides the ability to share one parallel port between multiple device drivers.

The cdrom/ directory contains a file called info, which reveals a number of important CD-ROM
parameters:

CD-ROM information, Id: cdrom.c 3.20 2003/12/17

Chapter 5. The proc File System 67

drive name: hdc
drive speed: 48
drive # of slots: 1
Can close tray: 1
Can open tray: 1
Can lock tray: 1
Can change speed: 1
Can select disk: 0
Can read multisession: 1
Can read MCN: 1
Reports media changed: 1
Can play audio: 1
Can write CD-R: 0
Can write CD-RW: 0
Can read DVD: 0
Can write DVD-R: 0
Can write DVD-RAM: 0
Can read MRW: 0
Can write MRW: 0
Can write RAM: 0

This file can be quickly scanned to discover the qualities of an unknown CD-ROM. If multiple CD-
ROMs are available on a system, each device is given its own column of information.

Various files in /proc/sys/dev/cdrom, such as autoclose and checkmedia, can be used to con-
trol the system’s CD-ROM. Use the echo command to enable or disable these features.

If RAID support is compiled into the kernel, a /proc/sys/dev/raid/ directory becomes available
with at least two files in it: speed_limit_min and speed_limit_max. These settings determine
the acceleration of RAID devices for I/O intensive tasks, such as resyncing the disks.

5.3.9.2. /proc/sys/fs/
This directory contains an array of options and information concerning various aspects of the file
system, including quota, file handle, inode, and dentry information.

The binfmt_misc/ directory is used to provide kernel support for miscellaneous binary formats.

The important files in /proc/sys/fs/ include:

• dentry-state — Provides the status of the directory cache. The file looks similar to the follow-
ing:
57411 52939 45 0 0 0

The first number reveals the total number of directory cache entries, while the second number
displays the number of unused entries. The third number tells the number of seconds between when
a directory has been freed and when it can be reclaimed, and the fourth measures the pages currently
requested by the system. The last two numbers are not used and display only zeros.

• dquot-nr — Lists the maximum number of cached disk quota entries.

• file-max — Lists the maximum number of file handles that the kernel allocates. Raising the value
in this file can resolve errors caused by a lack of available file handles.

• file-nr— Lists the number of allocated file handles, used file handles, and the maximum number
of file handles.

• overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use
with file systems that only support 16-bit group and user IDs.

• super-max — Controls the maximum number of superblocks available.

68 Chapter 5. The proc File System

• super-nr — Displays the current number of superblocks in use.

5.3.9.3. /proc/sys/kernel/
This directory contains a variety of different configuration files that directly affect the operation of the
kernel. Some of the most important files include:

• acct — Controls the suspension of process accounting based on the percentage of free space
available on the file system containing the log. By default, the file looks like the following:
4 2 30

The first value dictates the percentage of free space required for logging to resume, while the second
value sets the threshold percentage of free space when logging is suspended. The third value sets
the interval, in seconds, that the kernel polls the file system to see if logging should be suspended
or resumed.

• cap-bound — Controls the capability bounding settings, which provides a list of capabilities for
any process on the system. If a capability is not listed here, then no process, no matter how privi-
leged, can do it. The idea is to make the system more secure by ensuring that certain things cannot
happen, at least beyond a certain point in the boot process.

For a valid list of values for this virtual file, refer to the following installed documentation:

/lib/modules/<kernel-version>/build/include/linux/capability.h.

• ctrl-alt-del — Controls whether [Ctrl]-[Alt]-[Delete] gracefully restarts the computer using
init (0) or forces an immediate reboot without syncing the dirty buffers to disk (1).

• domainname — Configures the system domain name, such as example.com.

• exec-shield— Configures the Exec Shield feature of the kernel. Exec Shield provides protection
against certain types of buffer overflow attacks.

There are two possible values for this virtual file:

• 0 — Disables Exec Shield.

• 1 — Enables Exec Shield. This is the default value.

Important

If a system is running security-sensitive applications that were started while Exec Shield was
disabled, these applications must be restarted when Exec Shield is enabled in order for Exec
Shield to take effect.

• exec-shield-randomize — Enables location randomization of various items in memory. This
helps deter potential attackers from locating programs and daemons in memory. Each time a pro-
gram or daemon starts, it is put into a different memory location each time, never in a static or
absolute memory address.

There are two possible values for this virtual file:

• 0 — Disables randomization of Exec Shield. This may be useful for application debugging pur-
poses.

• 1 — Enables randomization of Exec Shield. This is the default value. Note: The exec-shield
file must also be set to 1 for exec-shield-randomize to be effective.

• hostname — Configures the system hostname, such as www.example.com.

Chapter 5. The proc File System 69

• hotplug— Configures the utility to be used when a configuration change is detected by the system.
This is primarily used with USB and Cardbus PCI. The default value of /sbin/hotplug should
not be changed unless testing a new program to fulfill this role.

• modprobe — Sets the location of the program used to load kernel modules. The default value is
/sbin/modprobe which means kmod calls it to load the module when a kernel thread calls kmod.

• msgmax — Sets the maximum size of any message sent from one process to another and is set
to 8192 bytes by default. Be careful when raising this value, as queued messages between pro-
cesses are stored in non-swappable kernel memory. Any increase in msgmax would increase RAM
requirements for the system.

• msgmnb — Sets the maximum number of bytes in a single message queue. The default is 16384.

• msgmni — Sets the maximum number of message queue identifiers. The default is 16.

• osrelease — Lists the Linux kernel release number. This file can only be altered by changing the
kernel source and recompiling.

• ostype — Displays the type of operating system. By default, this file is set to Linux, and this
value can only be changed by changing the kernel source and recompiling.

• overflowgid and overflowuid — Defines the fixed group ID and user ID, respectively, for use
with system calls on architectures that only support 16-bit group and user IDs.

• panic — Defines the number of seconds the kernel postpones rebooting when the system experi-
ences a kernel panic. By default, the value is set to 0, which disables automatic rebooting after a
panic.

• printk— This file controls a variety of settings related to printing or logging error messages. Each
error message reported by the kernel has a loglevel associated with it that defines the importance of
the message. The loglevel values break down in this order:

• 0 — Kernel emergency. The system is unusable.

• 1 — Kernel alert. Action must be taken immediately.

• 2 — Condition of the kernel is considered critical.

• 3 — General kernel error condition.

• 4 — General kernel warning condition.

• 5 — Kernel notice of a normal but significant condition.

• 6 — Kernel informational message.

• 7 — Kernel debug-level messages.

Four values are found in the printk file:
6 4 1 7

Each of these values defines a different rule for dealing with error messages. The first value, called
the console loglevel, defines the lowest priority of messages printed to the console. (Note that, the
lower the priority, the higher the loglevel number.) The second value sets the default loglevel for
messages without an explicit loglevel attached to them. The third value sets the lowest possible
loglevel configuration for the console loglevel. The last value sets the default value for the console
loglevel.

• random/ directory — Lists a number of values related to generating random numbers for the kernel.

• rtsig-max — Configures the maximum number of POSIX real-time signals that the system may
have queued at any one time. The default value is 1024.

• rtsig-nr — Lists the current number of POSIX real-time signals queued by the kernel.

• sem — Configures semaphore settings within the kernel. A semaphore is a System V IPC object
that is used to control utilization of a particular process.

70 Chapter 5. The proc File System

• shmall — Sets the total amount of shared memory that can be used at one time on the system, in
bytes. By default, this value is 2097152.

• shmmax — Sets the largest shared memory segment size allowed by the kernel, in bytes. By default,
this value is 33554432. However, the kernel supports much larger values than this.

• shmmni — Sets the maximum number of shared memory segments for the whole system, in bytes.
By default, this value is 4096

• sysrq — Activates the System Request Key, if this value is set to anything other than zero (0), the
default.

The System Request Key allows immediate input to the kernel through simple key combinations.
For example, the System Request Key can be used to immediately shut down or restart a sys-
tem, sync all mounted file systems, or dump important information to the console. To initiate a
System Request Key, type [Alt]-[SysRq]-[<system request code>]. Replace <system
request code> with one of the following system request codes:

• r — Disables raw mode for the keyboard and sets it to XLATE (a limited keyboard mode which
does not recognize modifiers such as [Alt], [Ctrl], or [Shift] for all keys).

• k — Kills all processes active in a virtual console. Also called Secure Access Key (SAK), it is
often used to verify that the login prompt is spawned from init and not a trojan copy designed
to capture usernames and passwords.

• b — Reboots the kernel without first unmounting file systems or syncing disks attached to the
system.

• c — Crashes the system without first unmounting file systems or syncing disks attached to the
system.

• o — Shuts off the system.

• s — Attempts to sync disks attached to the system.

• u — Attempts to unmount and remount all file systems as read-only.

• p — Outputs all flags and registers to the console.

• t — Outputs a list of processes to the console.

• m — Outputs memory statistics to the console.

• 0 through 9 — Sets the log level for the console.

• e — Kills all processes except init using SIGTERM.

• i — Kills all processes except init using SIGKILL.

• l — Kills all processes using SIGKILL (including init). The system is unusable after issuing
this System Request Key code.

• h — Displays help text.

This feature is most beneficial when using a development kernel or when experiencing system
freezes.

Caution

The System Request Key feature is considered a security risk because an unattended console
provides an attacker with access to the system. For this reason, it is turned off by default.

Refer to /usr/share/doc/kernel-doc-<version>/Documentation/sysrq.txt for more
information about the System Request Key.

• sysrq-key — Defines the key code for the System Request Key (84 is the default).

• sysrq-sticky — Defines whether the System Request Key is a chorded key combination. The
accepted values are as follows:

Chapter 5. The proc File System 71

• 0 — [Alt]-[SysRq] and the system request code must be pressed simultaneously. This is the
default value.

• 1 — [Alt]-[SysRq] must be pressed simultaneously, but the system request code can be pressed
anytime before the number of seconds specified in /proc/sys/kernel/sysrq-timer elapses.

• sysrq-timer — Specifies the number of seconds allowed to pass before the system request code
must be pressed. The default value is 10.

• tainted — Indicates whether a non-GPL module is loaded.

• 0 — No non-GPL modules are loaded.

• 1 — At least one module without a GPL license (including modules with no license) is loaded.

• 2 — At least one module was force-loaded with the command insmod -f.

• threads-max — Sets the maximum number of threads to be used by the kernel, with a default
value of 2048.

• version — Displays the date and time the kernel was last compiled. The first field in this file, such
as #3, relates to the number of times a kernel was built from the source base.

5.3.9.4. /proc/sys/net/
This directory contains subdirectories concerning various networking topics. Various configurations
at the time of kernel compilation make different directories available here, such as appletalk/,
ethernet/, ipv4/, ipx/, and ipv6/. By altering the files within these directories, system adminis-
trators are able to adjust the network configuration on a running system.

Given the wide variety of possible networking options available with Linux, only the most common
/proc/sys/net/ directories are discussed.

The /proc/sys/net/core/ directory contains a variety of settings that control the interaction be-
tween the kernel and networking layers. The most important of these files are:

• message_burst — Sets the amount of time in tenths of a second required to write a new warning
message. This setting is used to mitigate Denial of Service (DoS) attacks. The default setting is 50.

• message_cost — Sets a cost on every warning message. The higher the value of this file (default
of 5), the more likely the warning message is ignored. This setting is used to mitigate DoS attacks.

The idea of a DoS attack is to bombard the targeted system with requests that generate errors and fill
up disk partitions with log files or require all of the system’s resources to handle the error logging.
The settings in message_burst and message_cost are designed to be modified based on the
system’s acceptable risk versus the need for comprehensive logging.

• netdev_max_backlog — Sets the maximum number of packets allowed to queue when a partic-
ular interface receives packets faster than the kernel can process them. The default value for this
file is 300.

• optmem_max — Configures the maximum ancillary buffer size allowed per socket.

• rmem_default — Sets the receive socket buffer default size in bytes.

• rmem_max — Sets the receive socket buffer maximum size in bytes.

• wmem_default — Sets the send socket buffer default size in bytes.

• wmem_max — Sets the send socket buffer maximum size in bytes.

72 Chapter 5. The proc File System

The /proc/sys/net/ipv4/ directory contains additional networking settings. Many of these set-
tings, used in conjunction with one another, are useful in preventing attacks on the system or when
using the system to act as a router.

Caution

An erroneous change to these files may affect remote connectivity to the system.

The following is a list of some of the more important files within the /proc/sys/net/ipv4/ direc-
tory:

• icmp_destunreach_rate, icmp_echoreply_rate, icmp_paramprob_rate, and
icmp_timeexeed_rate — Set the maximum ICMP send packet rate, in 1/100 of a second, to
hosts under certain conditions. A setting of 0 removes any delay and is not a good idea.

• icmp_echo_ignore_all and icmp_echo_ignore_broadcasts— Allows the kernel to ignore
ICMP ECHO packets from every host or only those originating from broadcast and multicast ad-
dresses, respectively. A value of 0 allows the kernel to respond, while a value of 1 ignores the
packets.

• ip_default_ttl— Sets the default Time To Live (TTL), which limits the number of hops a packet
may make before reaching its destination. Increasing this value can diminish system performance.

• ip_forward — Permits interfaces on the system to forward packets to one other. By default, this
file is set to 0. Setting this file to 1 enables network packet forwarding.

• ip_local_port_range — Specifies the range of ports to be used by TCP or UDP when a local
port is needed. The first number is the lowest port to be used and the second number specifies the
highest port. Any systems that expect to require more ports than the default 1024 to 4999 should
use a range from 32768 to 61000.

• tcp_syn_retries — Provides a limit on the number of times the system re-transmits a SYN
packet when attempting to make a connection.

• tcp_retries1 — Sets the number of permitted re-transmissions attempting to answer an incom-
ing connection. Default of 3.

• tcp_retries2 — Sets the number of permitted re-transmissions of TCP packets. Default of 15.

The

/usr/share/doc/kernel-doc-<version>/Documentation/networking/
ip-sysctl.txt

file contains a complete list of files and options available in the /proc/sys/net/ipv4/ directory.

A number of other directories exist within the /proc/sys/net/ipv4/ directory and each covers a
different aspect of the network stack. The /proc/sys/net/ipv4/conf/ directory allows each sys-
tem interface to be configured in different ways, including the use of default settings for unconfigured
devices (in the /proc/sys/net/ipv4/conf/default/ subdirectory) and settings that override all
special configurations (in the /proc/sys/net/ipv4/conf/all/ subdirectory).

The /proc/sys/net/ipv4/neigh/ directory contains settings for communicating with a host di-
rectly connected to the system (called a network neighbor) and also contains different settings for
systems more than one hop away.

Routing over IPV4 also has its own directory, /proc/sys/net/ipv4/route/. Unlike conf/ and
neigh/, the /proc/sys/net/ipv4/route/ directory contains specifications that apply to rout-
ing with any interfaces on the system. Many of these settings, such as max_size, max_delay, and

Chapter 5. The proc File System 73

min_delay, relate to controlling the size of the routing cache. To clear the routing cache, write any
value to the flush file.

Additional information about these directories and the possible values for their configuration files can
be found in:

/usr/share/doc/kernel-doc-<version>/Documentation/filesystems/proc.txt

5.3.9.5. /proc/sys/vm/
This directory facilitates the configuration of the Linux kernel’s virtual memory (VM) subsystem. The
kernel makes extensive and intelligent use of virtual memory, which is commonly referred to as swap
space.

The following files are commonly found in the /proc/sys/vm/ directory:

• block_dump — Configures block I/O debugging when enabled. All read/write and block dirty-
ing operations done to files are logged accordingly. This can be useful if diagnosing disk spin up
and spin downs for laptop battery conservation. All output when block_dump is enabled can be
retrieved via dmesg. The default value is 0.

Tip

If block_dump is enabled at the same time as kernel debugging, it is prudent to stop the klogd
daemon, as it generates erroneous disk activity caused by block_dump.

• dirty_background_ratio — Starts background writeback of dirty data at this percentage of
total memory, via a pdflush daemon. The default value is 10.

• dirty_expire_centisecs — Defines when dirty in-memory data is old enough to be eligible
for writeout. Data which has been dirty in-memory for longer than this interval is written out next
time a pdflush daemon wakes up. The default value is 3000, expressed in hundredths of a second.

• dirty_ratio — Starts active writeback of dirty data at this percentage of total memory for the
generator of dirty data, via pdflush. The default value is 40.

• dirty_writeback_centisecs— Defines the interval between pdflush daemon wakeups, which
periodically writes dirty in-memory data out to disk. The default value is 500, expressed in hun-
dredths of a second.

• laptop_mode — Minimizes the number of times that a hard disk needs to spin up by keeping
the disk spun down for as long as possible, therefore conserving battery power on laptops. This
increases efficiency by combining all future I/O processes together, reducing the frequency of spin
ups. The default value is 0, but is automatically enabled in case a battery on a laptop is used.

This value is controlled automatically by the acpid daemon once a user is notified battery power
is enabled. No user modifications or interactions are necessary if the laptop supports the ACPI
(Advanced Configuration and Power Interface) specification.

For more information, refer to the following installed documentation:

/usr/share/doc/kernel-doc-<version>/Documentation/laptop-mode.txt

• lower_zone_protection — Determines how aggressive the kernel is in defending lower mem-
ory allocation zones. This is effective when utilized with machines configured with highmem
memory space enabled. The default value is 0, no protection at all. All other integer values are
in megabytes, and lowmem memory is therefore protected from being allocated by users.

For more information, refer to the following installed documentation:

74 Chapter 5. The proc File System

/usr/share/doc/kernel-doc-<version>/Documentation/filesystems/proc.txt

• max_map_count — Configures the maximum number of memory map areas a process may have.
In most cases, the default value of 65536 is appropriate.

• min_free_kbytes — Forces the Linux VM (virtual memory manager) to keep a minimum num-
ber of kilobytes free. The VM uses this number to compute a pages_min value for each lowmem
zone in the system. The default value is in respect to the total memory on the machine.

• nr_hugepages — Indicates the current number of configured hugetlb pages in the kernel.

For more information, refer to the following installed documentation:

/usr/share/doc/kernel-doc-<version>/Documentation/vm/hugetlbpage.txt

• nr_pdflush_threads — Indicates the number of pdflush daemons that are currently running.
This file is read-only, and should not be changed by the user. Under heavy I/O loads, the default
value of two is increased by the kernel.

• overcommit_memory — Configures the conditions under which a large memory request is ac-
cepted or denied. The following three modes are available:

• 0 — The kernel performs heuristic memory over commit handling by estimating the amount of
memory available and failing requests that are blatantly invalid. Unfortunately, since memory
is allocated using a heuristic rather than a precise algorithm, this setting can sometimes allow
available memory on the system to be overloaded. This is the default setting.

• 1 — The kernel performs no memory over commit handling. Under this setting, the potential for
memory overload is increased, but so is performance for memory intensive tasks (such as those
executed by some scientific software).

• 2 — The kernel fails requests for memory that add up to all of swap plus the percent of physi-
cal RAM specified in /proc/sys/vm/overcommit_ratio. This setting is best for those who
desire less risk of memory overcommitment.

Note

This setting is only recommended for systems with swap areas larger than physical memory.

• overcommit_ratio — Specifies the percentage of physical RAM considered when
/proc/sys/vm/overcommit_memory is set to 2. The default value is 50.

• page-cluster— Sets the number of pages read in a single attempt. The default value of 3, which
actually relates to 16 pages, is appropriate for most systems.

• swappiness — Determines how much a machine should swap. The higher the value, the more
swapping occurs. The default value, as a percentage, is set to 60.

All kernel-based documentation can be found in the following locally installed location:

/usr/share/doc/kernel-doc-<version>/Documentation/, which contains additional
information.

5.3.10. /proc/sysvipc/
This directory contains information about System V IPC resources. The files in this directory relate to
System V IPC calls for messages (msg), semaphores (sem), and shared memory (shm).

Chapter 5. The proc File System 75

5.3.11. /proc/tty/
This directory contains information about the available and currently used tty devices on the system.
Originally called teletype devices, any character-based data terminals are called tty devices.

In Linux, there are three different kinds of tty devices. Serial devices are used with serial connections,
such as over a modem or using a serial cable. Virtual terminals create the common console connection,
such as the virtual consoles available when pressing [Alt]-[<F-key>] at the system console. Pseudo
terminals create a two-way communication that is used by some higher level applications, such as
XFree86. The drivers file is a list of the current tty devices in use, as in the following example:

serial /dev/cua 5 64-127 serial:callout
serial /dev/ttyS 4 64-127 serial
pty_slave /dev/pts 136 0-255 pty:slave
pty_master /dev/ptm 128 0-255 pty:master
pty_slave /dev/ttyp 3 0-255 pty:slave
pty_master /dev/pty 2 0-255 pty:master
/dev/vc/0 /dev/vc/0 4 0 system:vtmaster
/dev/ptmx /dev/ptmx 5 2 system
/dev/console /dev/console 5 1 system:console
/dev/tty /dev/tty 5 0 system:/dev/tty
unknown /dev/vc/%d 4 1-63 console

The /proc/tty/driver/serial file lists the usage statistics and status of each of the serial tty
lines.

In order for tty devices to be used as network devices, the Linux kernel enforces line discipline on the
device. This allows the driver to place a specific type of header with every block of data transmitted
over the device, making it possible for the remote end of the connection to a block of data as just one
in a stream of data blocks. SLIP and PPP are common line disciplines, and each are commonly used
to connect systems to one other over a serial link.

Registered line disciplines are stored in the ldiscs file, and more detailed information is available
within the ldisc/ directory.

5.4. Using the sysctl Command
The /sbin/sysctl command is used to view, set, and automate kernel settings in the /proc/sys/
directory.

For a quick overview of all settings configurable in the /proc/sys/ directory, type the
/sbin/sysctl -a command as root. This creates a large, comprehensive list, a small portion of
which looks something like the following:

net.ipv4.route.min_delay = 2
kernel.sysrq = 0
kernel.sem = 250 32000 32 128

This is the same information seen if each of the files were viewed individually. The only difference
is the file location. For example, the /proc/sys/net/ipv4/route/min_delay file is listed as
net.ipv4.route.min_delay, with the directory slashes replaced by dots and the proc.sys por-
tion assumed.

The sysctl command can be used in place of echo to assign values to writable files in the
/proc/sys/ directory. For example, instead of using the command

echo 1 > /proc/sys/kernel/sysrq

76 Chapter 5. The proc File System

use the equivalent sysctl command as follows:

sysctl -w kernel.sysrq="1"
kernel.sysrq = 1

While quickly setting single values like this in /proc/sys/ is helpful during testing, this method
does not work as well on a production system as special settings within /proc/sys/ are lost when
the machine is rebooted. To preserve custom settings, add them to the /etc/sysctl.conf file.

Each time the system boots, the init program runs the /etc/rc.d/rc.sysinit script. This script
contains a command to execute sysctl using /etc/sysctl.conf to determine the values passed
to the kernel. Any values added to /etc/sysctl.conf therefore take effect each time the system
boots.

5.5. Additional Resources
Below are additional sources of information about proc file system.

5.5.1. Installed Documentation
Some of the best documentation about the proc file system is installed on the system by default.

• /usr/share/doc/kernel-doc-<version>/Documentation/filesystems/proc.txt
— Contains assorted, but limited, information about all aspects of the /proc/ directory.

• /usr/share/doc/kernel-doc-<version>/Documentation/sysrq.txt — An overview
of System Request Key options.

• /usr/share/doc/kernel-doc-<version>/Documentation/sysctl/— A directory con-
taining a variety of sysctl tips, including modifying values that concern the kernel (kernel.txt),
accessing file systems (fs.txt), and virtual memory use (vm.txt).

• /usr/share/doc/kernel-doc-<version>/Documentation/networking/ip-sysctl.txt
— A detailed overview of IP networking options.

5.5.2. Useful Websites

• http://www.linuxhq.com/ — This website maintains a complete database of source, patches, and
documentation for various versions of the Linux kernel.

Chapter 6.
Users and Groups

The control of users and groups is a core element of Red Hat Enterprise Linux system administration.

Users can be either people, meaning accounts tied to physical users, or accounts which exist for
specific applications to use.

Groups are logical expressions of organization, tying users together for a common purpose. Users
within a group can read, write, or execute files owned by that group.

Each user and group has a unique numerical identification number called a userid (UID) and a groupid
(GID) respectively.

A user who creates a file is also the owner and group owner of that file. The file is assigned separate
read, write, and execute permissions for the owner, the group, and everyone else. The file owner can
be changed only by the root user as well as access permissions can be changed by both the root user
and the owner of the file.

Red Hat Enterprise Linux supports access control lists (ACLs) for files and directories which allow
permissions for specific users outside of the owner to be set. For more information about using ACLs,
refer to the chapter titled Access Control Lists in the Red Hat Enterprise Linux System Administration
Guide.

Proper management of users and groups as well as the effective management of file permissions are
among the most important tasks a system administrator undertakes. For a detailed look at strategies for
managing users and groups, refer to the chapter titled Managing User Accounts and Resource Access
in the Red Hat Enterprise Linux Introduction to System Administration guide.

6.1. User and Group Management Tools
Managing users and groups can be a tedious task, but Red Hat Enterprise Linux provides tools and
conventions to make their management easier.

The easiest way to manage users and groups is through the graphical application, User Manager
(system-config-users). For more information on User Manager, refer to the chapter titled User
and Group Configuration in the Red Hat Enterprise Linux System Administration Guide.

The following command line tools can also be used to manage users and groups:

• useradd, usermod, and userdel — Industry-standard methods of adding, deleting and modify-
ing user accounts.

• groupadd, groupmod, and groupdel— Industry-standard methods of adding, deleting, and mod-
ifying user groups.

• gpasswd — Industry-standard method of administering the /etc/group file.

• pwck, grpck — Tools used for the verification of the password, group, and associated shadow files.

• pwconv, pwunconv — Tools used for the conversion of passwords to shadow passwords and back
to standard passwords.

For an overview of users and group management, refer to the Red Hat Enterprise Linux Introduction
to System Administration. For a detailed look at command line tools for managing users and groups,
see the chapter titled User and Group Configuration in the Red Hat Enterprise Linux System Admin-
istration Guide.

78 Chapter 6. Users and Groups

6.2. Standard Users
Table 6-1 lists the standard users configured in the /etc/passwd file by an Everything installation.
The groupid (GID) in this table is the primary group for the user. See Section 6.3 Standard Groups
for a listing of standard groups.

User UID GID Home Directory Shell

root 0 0 /root /bin/bash

bin 1 1 /bin /sbin/nologin

daemon 2 2 /sbin /sbin/nologin

adm 3 4 /var/adm /sbin/nologin

lp 4 7 /var/spool/lpd /sbin/nologin

sync 5 0 /sbin /bin/sync

shutdown 6 0 /sbin /sbin/shutdown

halt 7 0 /sbin /sbin/halt

mail 8 12 /var/spool/mail /sbin/nologin

news 9 13 /etc/news

uucp 10 14 /var/spool/uucp /sbin/nologin

operator 11 0 /root /sbin/nologin

games 12 100 /usr/games /sbin/nologin

gopher 13 30 /var/gopher /sbin/nologin

ftp 14 50 /var/ftp /sbin/nologin

nobody 99 99 / /sbin/nologin

rpm 37 37 /var/lib/rpm /sbin/nologin

vcsa 69 69 /dev /sbin/nologin

dbus 81 81 / /sbin/nologin

ntp 38 38 /etc/ntp /sbin/nologin

canna 39 39 /var/lib/canna /sbin/nologin

nscd 28 28 / /sbin/nologin

rpc 32 32 / /sbin/nologin

postfix 89 89 /var/spool/postfix /sbin/nologin

mailman 41 41 /var/mailman /sbin/nologin

named 25 25 /var/named /bin/false

amanda 33 6 var/lib/amanda/ /bin/bash

postgres 26 26 /var/lib/pgsql /bin/bash

exim 93 93 /var/spool/exim /sbin/nologin

sshd 74 74 /var/empty/sshd /sbin/nologin

Chapter 6. Users and Groups 79

User UID GID Home Directory Shell

rpcuser 29 29 /var/lib/nfs /sbin/nologin

nsfnobody 65534 65534 /var/lib/nfs /sbin/nologin

pvm 24 24 /usr/share/pvm3 /bin/bash

apache 48 48 /var/www /sbin/nologin

xfs 43 43 /etc/X11/fs /sbin/nologin

gdm 42 42 /var/gdm /sbin/nologin

htt 100 101 /usr/lib/im /sbin/nologin

mysql 27 27 /var/lib/mysql /bin/bash

webalizer 67 67 /var/www/usage /sbin/nologin

mailnull 47 47 /var/spool/mqueue /sbin/nologin

smmsp 51 51 /var/spool/mqueue /sbin/nologin

squid 23 23 /var/spool/squid /sbin/nologin

ldap 55 55 /var/lib/ldap /bin/false

netdump 34 34 /var/crash /bin/bash

pcap 77 77 /var/arpwatch /sbin/nologin

radiusd 95 95 / /bin/false

radvd 75 75 / /sbin/nologin

quagga 92 92 /var/run/quagga /sbin/login

wnn 49 49 /var/lib/wnn /sbin/nologin

dovecot 97 97 /usr/libexec/dovecot /sbin/nologin

Table 6-1. Standard Users

6.3. Standard Groups
Table 6-2 lists the standard groups configured by an Everything installation. Groups are stored in the
/etc/group file.

Group GID Members

root 0 root

bin 1 root, bin, daemon

daemon 2 root, bin, daemon

sys 3 root, bin, adm

adm 4 root, adm, daemon

tty 5

disk 6 root

80 Chapter 6. Users and Groups

Group GID Members

lp 7 daemon, lp

mem 8

kmem 9

wheel 10 root

mail 12 mail, postfix, exim

news 13 news

uucp 14 uucp

man 15

games 20

gopher 30

dip 40

ftp 50

lock 54

nobody 99

users 100

rpm 37

utmp 22

floppy 19

vcsa 69

dbus 81

ntp 38

canna 39

nscd 28

rpc 32

postdrop 90

postfix 89

mailman 41

exim 93

named 25

postgres 26

sshd 74

rpcuser 29

nfsnobody 65534

pvm 24

apache 48

Chapter 6. Users and Groups 81

Group GID Members

xfs 43

gdm 42

htt 101

mysql 27

webalizer 67

mailnull 47

smmsp 51

squid 23

ldap 55

netdump 34

pcap 77

quaggavt 102

quagga 92

radvd 75

slocate 21

wnn 49

dovecot 97

radiusd 95

Table 6-2. Standard Groups

6.4. User Private Groups
Red Hat Enterprise Linux uses a user private group (UPG) scheme, which makes UNIX groups easier
to manage.

A UPG is created whenever a new user is added to the system. A UPG has the same name as the user
for which it was created and that user is the only member of the UPG.

UPGs make it safe to set default permissions for a newly created file or directory which allow both
the user and that user’s group to make modifications to the file or directory.

The setting which determines what permissions are applied to a newly created file or directory is called
a umask and is configured in the /etc/bashrc file. Traditionally on UNIX systems, the umask is
set to 022, which allows only the user who created the file or directory to make modifications. Under
this scheme, all other users, including members of the creator’s group, are not allowed to make any
modifications. However, under the UPG scheme, this "group protection" is not necessary since every
user has their own private group.

6.4.1. Group Directories
Many IT organizations like to create a group for each major project and then assign people to the
group if they need to access that project’s files. Using this traditional scheme, managing files has been
difficult; when someone creates a file, it is associated with the primary group to which they belong.
When a single person works on multiple projects, it is difficult to associate the right files with the right

82 Chapter 6. Users and Groups

group. Using the UPG scheme, however, groups are automatically assigned to files created within a
directory with the setgid bit set. The setgid bit makes managing group projects that share a common
directory very simple because any files a user creates within the directory are owned by the group
which owns the directory.

Lets say, for example, that a group of people work on files in the /usr/lib/emacs/site-lisp/
directory. Some people are trusted to modify the directory, but certainly not everyone is trusted. First
create an emacs group, as in the following command:

/usr/sbin/groupadd emacs

To associate the contents of the directory with the emacs group, type:

chown -R root.emacs /usr/lib/emacs/site-lisp

Now, it is possible to add the proper users to the group with the gpasswd command:

/usr/bin/gpasswd -a <username> emacs

To allow users to create files within the directory, use the following command:

chmod 775 /usr/lib/emacs/site-lisp

When a user creates a new file, it is assigned the group of the user’s default private group. Next, set
the setgid bit, which assigns everything created in the directory the same group permission as the
directory itself (emacs). Use the following command:

chmod 2775 /usr/lib/emacs/site-lisp

At this point, because each user’s default umask is 002, all members of the emacs group can create
and edit files in the /usr/lib/emacs/site-lisp/ directory without the administrator having to
change file permissions every time users write new files.

6.5. Shadow Passwords
In multiuser environments it is very important to use shadow passwords (provided by the
shadow-utils package). Doing so enhances the security of system authentication files. For this
reason, the installation program enables shadow passwords by default.

The following lists the advantages pf shadow passwords have over the traditional way of storing
passwords on UNIX-based systems:

• Improves system security by moving encrypted password hashes from the world-readable
/etc/passwd file to /etc/shadow, which is readable only by the root user.

• Stores information about password aging.

• Allows the use the /etc/login.defs file to enforce security policies.

Most utilities provided by the shadow-utils package work properly whether or not shadow
passwords are enabled. However, since password aging information is stored exclusively in the
/etc/shadow file, any commands which create or modify password aging information do not work.

The following is a list of commands which do not work without first enabling shadow passwords:

• chage

• gpasswd

Chapter 6. Users and Groups 83

• /usr/sbin/usermod -e or -f options

• /usr/sbin/useradd -e or -f options

6.6. Additional Resources
For more information about users and groups, and tools to manage them, refer to the following re-
sources.

6.6.1. Installed Documentation

• Related man pages — There are a number of man pages for the various applications and configu-
ration files involved with managing users and groups. Some of the more important man pages have
been listed here:

User and Group Administrative Applications

• man chage — A command to modify password aging policies and account expiration.

• man gpasswd — A command to administer the /etc/group file.

• man groupadd — A command to add groups.

• man grpck — A command to verify the /etc/group file.

• man groupdel — A command to remove groups.

• man groupmod — A command to modify group membership.

• man pwck — A command to verify the /etc/passwd and /etc/shadow files.

• man pwconv — A tool to convert standard passwords to shadow passwords.

• man pwunconv — A tool to convert shadow passwords to standard passwords.

• man useradd — A command to add users.

• man userdel — A command to remove users.

• man usermod — A command to modify users.

Configuration Files

• man 5 group — The file containing group information for the system.

• man 5 passwd — The file containing user information for the system.

• man 5 shadow — The file containing passwords and account expiration information for
the system.

84 Chapter 6. Users and Groups

6.6.2. Related Books

• Red Hat Enterprise Linux Introduction to System Administration; Red Hat, Inc. — This companion
manual provides an overview of concepts and techniques of system administration. The chapter
titled Managing User Accounts and Resource Access has great information pertaining to user and
group account management.

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — This companion manual
contains more information on managing users and groups as well as advanced permission configu-
ration using ACLs. Refer to the chapters titled User and Group Configuration and Access Control
Lists for details.

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — This companion manual provides
security-related aspects of user accounts, namely choosing strong passwords.

Chapter 7.
The X Window System

While the heart of Red Hat Enterprise Linux is the kernel, for many users, the face of the operating
system is the graphical environment provided by the X Window System, also called X.

Various windowing environments have existed in the UNIX™ world for decades, predating many of
the current mainstream operating systems. Through the years, X has become the dominant graphical
environment for UNIX-like operating systems.

The graphical environment for Red Hat Enterprise Linux is supplied by the X.Org Foundation, an open
source consortium created to manage development and strategy for the X Window System and related
technologies. X.Org is a large scale, rapidly developing project with hundreds of developers around
the world. It features a wide degree of support for a variety of hardware devices and architectures, and
can run on a variety of different operating systems and platforms. This release for Red Hat Enterprise
Linux specifically includes the X11R6.8 release of the X Window System.

The X Window System uses a client-server architecture. The X server (the Xorg binary) listens for
connections from X client applications via a network or local loopback interface. The server commu-
nicates with the hardware, such as the video card, monitor, keyboard, and mouse. X client applications
exist in the user-space, creating a graphical user interface (GUI) for the user and passing user requests
to the X server.

7.1. The X11R6.8 Release
Red Hat Enterprise Linux 4 uses the X11R6.8 release as the base X Window System, which includes
many cutting edge X.Org technology enhancements, such as 3D hardware acceleration support, the
XRender extension for anti-aliased fonts, a modular driver-based design, and support for modern
video hardware and input devices.

Important

Red Hat Enterprise Linux no longer provides the XFree86™ server packages. Before upgrading to
the latest version of Red Hat Enterprise Linux, be sure that the video card is compatible with
the X11R6.8 release by checking the Red Hat Hardware Compatibility List located online at
http://hardware.redhat.com/.

The files related to the X11R6.8 release reside primarily in two locations:

/usr/X11R6/

Contains X server and some client applications, as well as X header files, libraries, modules, and
documentation.

/etc/X11/

Contains configuration files for X client and server applications. This includes configuration
files for the X server itself, the fs font server, the X display managers, and many other base
components.

It is important to note that the configuration file for the newer Fontconfig-based font architecture
is /etc/fonts/fonts.conf (which obsoletes the /etc/X11/XftConfig file). For more on
configuring and adding fonts, refer to Section 7.4 Fonts.

86 Chapter 7. The X Window System

Because the X server performs advanced tasks on a wide array of hardware, it requires detailed
configuration. The installation program installs and configures X automatically, unless the
X11R6.8 release packages are not selected for installation. However, if the monitor or video card
changes, X must to be reconfigured. The best way to do this is to use the X Configuration Tool
(system-config-display).

To start the X Configuration Tool while in an active X session, go to the Main Menu Button (on the
Panel) => System Settings => Display. After using the X Configuration Tool during an X session,
changes takes effect after logging out and logging back in. For more about using the X Configuration
Tool, refer to the chapter titled X Window System Configuration in the Red Hat Enterprise Linux
System Administration Guide.

In some situations, reconfiguring the X server may require manually editing its configuration
file, /etc/X11/xorg.conf. For information about the structure of this file, refer to
Section 7.3 X Server Configuration Files.

7.2. Desktop Environments and Window Managers
Once an X server is running, X client applications can connect to it and create a GUI for the user.
A range of GUIs are possible with Red Hat Enterprise Linux, from the rudimentary Tab Window
Manager to the highly developed and interactive GNOME desktop environment that most Red Hat
Enterprise Linux users are familiar with.

To create the latter, more advanced GUI, two main classes of X client applications must connect to
the X server: a desktop environment and a window manager.

7.2.1. Desktop Environments
A desktop environment brings together assorted X clients which, when used together, create a common
graphical user environment and development platform.

Desktop environments have advanced features allowing X clients and other running processes to com-
municate with one another, while also allowing all applications written to work in that environment to
perform advanced tasks, such as drag and drop operations.

Red Hat Enterprise Linux provides two desktop environments:

• GNOME — The default desktop environment for Red Hat Enterprise Linux based on the GTK+ 2
graphical toolkit.

• KDE — An alternative desktop environment based on the Qt 3 graphical toolkit.

Both GNOME and KDE have advanced productivity applications, such as word processors, spread-
sheets, and Web browsers, and provide tools to customize the look and feel of the GUI. Additionally,
if both the GTK+ 2 and the Qt libraries are present, KDE applications can run in GNOME and visa
versa.

7.2.2. Window Managers
Window managers are X client programs which are either part of a desktop environment or, in some
cases, standalone. Their primary purpose is to control the way graphical windows are positioned, re-
sized, or moved. Window managers also control title bars, window focus behavior, and user-specified
key and mouse button bindings.

Four window managers are included with Red Hat Enterprise Linux:

Chapter 7. The X Window System 87

• kwin — The KWin window manager is the default window manager for KDE. It is an efficient
window manager which supports custom themes.

• metacity — The Metacity window manager is the default window manager for GNOME. It is a
simple and efficient window manager which supports custom themes.

• mwm — The Motif window manager is a basic, standalone window manager. Since it is designed to
be a standalone window manager, it should not be used in conjunction with GNOME or KDE.

• twm — The minimalist Tab Window Manager, which provides the most basic tool set of any of
the window managers and can be used either as a standalone or with a desktop environment. It is
installed as part of the X11R6.8 release.

These window managers can be run without desktop environments to gain a better sense of
their differences. To do this, type the xinit -e <path-to-window-manager> command,
where <path-to-window-manager> is the location of the window manager binary
file. The binary file can be found by typing which <window-manager-name>, where
<window-manager-name> is the name of the window manager you are querying.

7.3. X Server Configuration Files
The X server is a single binary executable (/usr/X11R6/bin/Xorg) that dynamically loads any
necessary X server modules at runtime from the /usr/X11R6/lib/modules/ directory. Some of
these modules are automatically loaded by the server, while others are optional and must be specified
in the X server configuration file.

The X server and associated configuration files are stored in the /etc/X11/ directory. The configura-
tion file for the X server is /etc/X11/xorg.conf. When Red Hat Enterprise Linux is installed, the
configuration files for X are created using information gathered about the system hardware during the
installation process.

7.3.1. xorg.conf
While there is rarely a need to manually edit the /etc/X11/xorg.conffile, it is useful to understand
the various sections and optional parameters available, especially when troubleshooting.

7.3.1.1. The Structure
The /etc/X11/xorg.conf file is comprised of many different sections which address specific as-
pects of the system hardware.

Each section begins with a Section "<section-name>" line (where <section-name> is
the title for the section) and ends with an EndSection line. Within each of the sections are lines
containing option names and at least one option value, sometimes surrounded with double quotes (").

Lines beginning with a hash mark (#) are not read by the X server and are used for human-readable
comments.

Some options within the /etc/X11/xorg.conf file accept a boolean switch which turns the feature
on or off. Acceptable boolean values are:

• 1, on, true, or yes — Turns the option on.

• 0, off, false, or no — Turns the option off.

The following are some of the more important sections in the order in which they appear in a typical
/etc/X11/xorg.conf file. More detailed information about the X server configuration file can be
found in the xorg.conf man page.

88 Chapter 7. The X Window System

7.3.1.2. ServerFlags
The optional ServerFlags section contains miscellaneous global X server settings. Any settings
in this section may be overridden by options placed in the ServerLayout section (refer to
Section 7.3.1.3 ServerLayout for details).

Each entry within the ServerFlags section is on its own line and begins with the term Option
followed by an option enclosed in double quotation marks (").

The following is a sample ServerFlags section:

Section "ServerFlags"
Option "DontZap" "true"

EndSection

The following lists some of the most useful options:

• "DontZap" "<boolean>" — When the value of <boolean> is set to true, this setting pre-
vents the use of the [Ctrl]-[Alt]-[Backspace] key combination to immediately terminate the X
server.

• "DontZoom" "<boolean>" — When the value of <boolean> is set to true, this setting pre-
vents cycling through configured video resolutions using the [Ctrl]-[Alt]-[Keypad-Plus] and [Ctrl]-
[Alt]-[Keypad-Minus] key combinations.

7.3.1.3. ServerLayout
The ServerLayout section binds together the input and output devices controlled by the X server.
At a minimum, this section must specify one output device and at least two input devices (a keyboard
and a mouse).

The following example illustrates a typical ServerLayout section:

Section "ServerLayout"
Identifier "Default Layout"
Screen 0 "Screen0" 0 0
InputDevice "Mouse0" "CorePointer"
InputDevice "Keyboard0" "CoreKeyboard"

EndSection

The following entries are commonly used in the ServerLayout section:

• Identifier — Specifies a unique name for this ServerLayout section.

• Screen — Specifies the name of a Screen section to be used with the X server. More than one
Screen option may be present.

The following is an example of a typical Screen entry:
Screen 0 "Screen0" 0 0

The first number in this example Screen entry (0) indicates that the first monitor connector or
head on the video card uses the configuration specified in the Screen section with the identifier
"Screen0".

If the video card has more than one head, another Screen entry would be necessary with a different
number and a different Screen section identifier.

The numbers to the right of "Screen0" give the X and Y absolute coordinates for the upper-left
corner of the screen (0 0 by default).

• InputDevice — Specifies the name of an InputDevice section to be used with the X server.

Chapter 7. The X Window System 89

There must be at least two InputDevice entries: one for the default mouse and one for the de-
fault keyboard. The options CorePointer and CoreKeyboard indicate that these are the primary
mouse and keyboard.

• Option "<option-name>" — An optional entry which specifies extra parameters for the sec-
tion. Any options listed here override those listed in the ServerFlags section.

Replace <option-name> with a valid option listed for this section in the xorg.confman page.

It is possible to create more than one ServerLayout section. However, the server only reads the first
one to appear unless an alternate ServerLayout section is specified as a command line argument.

7.3.1.4. Files
The Files section sets paths for services vital to the X server, such as the font path.

The following example illustrates a typical Files section:

Section "Files"
RgbPath "/usr/X11R6/lib/X11/rgb"
FontPath "unix/:7100"

EndSection

The following entries are commonly used in the Files section:

• RgbPath — Specifies the location of the RGB color database. This database defines all valid color
names in X and ties them to specific RGB values.

• FontPath — Specifies where the X server must connect to obtain fonts from the xfs font server.

By default, the FontPath is unix/:7100. This tells the X server to obtain font information using
UNIX-domain sockets for inter-process communication (IPC) on port 7100.

Refer to Section 7.4 Fonts for more information concerning X and fonts.

• ModulePath — An optional parameter which specifies alternate directories which store X server
modules.

7.3.1.5. Module
The Module section specifies which modules from the /usr/X11R6/lib/modules/ directory the
X server is to load. Modules add additional functionality to the X server.

The following example illustrates a typical Module section:

Section "Module"
Load "dbe"
Load "extmod"
Load "fbdevhw"
Load "glx"
Load "record"
Load "freetype"
Load "type1"
Load "dri"
EndSection

90 Chapter 7. The X Window System

7.3.1.6. InputDevice
Each InputDevice section configures one input device for the X server. Systems typically have at
least two InputDevice sections, keyboard and mouse.

The following example illustrates a typical InputDevice section for a mouse:

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "IMPS/2"
Option "Device" "/dev/input/mice"
Option "Emulate3Buttons" "no"
EndSection

The following entries are commonly used in the InputDevice section:

• Identifier — Specifies a unique name for this InputDevice section. This is a required entry.

• Driver — Specifies the name of the device driver X must load for the device.

• Option — Specifies necessary options pertaining to the device.

For a mouse, these options typically include:

• Protocol — Specifies the protocol used by the mouse, such as IMPS/2.

• Device — Specifies the location of the physical device.

• Emulate3Buttons — Specifies whether to allow a two button mouse to act like a three button
mouse when both mouse buttons are pressed simultaneously.

Consult the xorg.conf man page for a list of valid options for this section.

By default, the InputDevice section has comments to allow users to configure additional options.

7.3.1.7. Monitor
Each Monitor section configures one type of monitor used by the system. While one Monitor section
is the minimum, additional instances may occur for each monitor type in use with the machine.

The best way to configure a monitor is to configure X during the installation process or by using the
X Configuration Tool. For more about using the X Configuration Tool, refer to the chapter titled X
Window System Configuration in the Red Hat Enterprise Linux System Administration Guide.

This example illustrates a typical Monitor section for a monitor:

Section "Monitor"
Identifier "Monitor0"
VendorName "Monitor Vendor"
ModelName "DDC Probed Monitor - ViewSonic G773-2"
DisplaySize 320 240
HorizSync 30.0 - 70.0
VertRefresh 50.0 - 180.0
EndSection

Chapter 7. The X Window System 91

Warning

Be careful if manually editing values in the Monitor section of /etc/X11/xorg.conf. Inappropriate
values can damage or destroy a monitor. Consult the monitor’s documentation for a listing of safe
operating parameters.

The following are commonly entries used in the Monitor section:

• Identifier — Specifies a unique name for this Monitor section. This is a required entry.

• VendorName — An optional parameter which specifies the vendor of the monitor.

• ModelName — An optional parameter which specifies the monitor’s model name.

• DisplaySize — An optional parameter which specifies, in millimeters, the physical size of the
monitor’s picture area.

• HorizSync — Specifies the range of horizontal sync frequencies compatible with the monitor in
kHz. These values help the X server determine the validity of built in or specified Modeline entries
for the monitor.

• VertRefresh — Specifies the range of vertical refresh frequencies supported by the monitor, in
kHz. These values help the X server determine the validity of built in or specified Modeline entries
for the monitor.

• Modeline — An optional parameter which specifies additional video modes for the monitor at
particular resolutions, with certain horizontal sync and vertical refresh resolutions. Refer to the
xorg.conf man page for a more detailed explanation of Modeline entries.

• Option "<option-name>" — An optional entry which specifies extra parameters for the sec-
tion. Replace <option-name> with a valid option listed for this section in the xorg.confman
page.

7.3.1.8. Device
Each Device section configures one video card on the system. While one Device section is the
minimum, additional instances may occur for each video card installed on the machine.

The best way to configure a video card is to configure X during the installation process or by using
the X Configuration Tool. For more about using the X Configuration Tool, refer to the chapter titled
X Window System Configuration in the Red Hat Enterprise Linux System Administration Guide.

The following example illustrates a typical Device section for a video card:

Section "Device"
Identifier "Videocard0"
Driver "mga"
VendorName "Videocard vendor"
BoardName "Matrox Millennium G200"
VideoRam 8192

Option "dpms"
EndSection

The following entries are commonly used in the Device section:

• Identifier — Specifies a unique name for this Device section. This is a required entry.

• Driver — Specifies which driver the X server must load to utilize the video card. A list of drivers
can be found in /usr/X11R6/lib/X11/Cards, which is installed with the hwdata package.

• VendorName — An optional parameter which specifies the vendor of the video card.

92 Chapter 7. The X Window System

• BoardName — An optional parameter which specifies the name of the video card.

• VideoRam — An optional parameter which specifies the amount of RAM available on the video
card in kilobytes. This setting is only necessary for video cards the X server cannot probe to detect
the amount of video RAM.

• BusID — An optional entry which specifies the bus location of the video card. This option is only
mandatory for systems with multiple cards.

• Screen — An optional entry which specifies which monitor connector or head on the video card
the Device section configures. This option is only useful for video cards with multiple heads.

If multiple monitors are connected to different heads on the same video card, separate Device
sections must exist and each of these sections must have a different Screen value.

Values for the Screen entry must be an integer. The first head on the video card has a value of 0.
The value for each additional head increments this value by one.

• Option "<option-name>" — An optional entry which specifies extra parameters for the sec-
tion. Replace <option-name> with a valid option listed for this section in the xorg.confman
page.

One of the more common options is "dpms", which activates the Service Star energy compliance
setting for the monitor.

7.3.1.9. Screen
Each Screen section binds one video card (or video card head) to one monitor by referencing the
Device section and the Monitor section for each. While one Screen section is the minimum, addi-
tional instances may occur for each video card and monitor combination present on the machine.

The following example illustrates a typical Screen section:

Section "Screen"
Identifier "Screen0"
Device "Videocard0"
Monitor "Monitor0"
DefaultDepth 16
SubSection "Display"
Depth 24
Modes "1280x1024" "1280x960" "1152x864" "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 16
Modes "1152x864" "1024x768" "800x600" "640x480"
EndSubSection
EndSection

The following entries are commonly used in the Screen section:

• Identifier — Specifies a unique name for this Screen section. This is a required entry.

• Device — Specifies the unique name of a Device section. This is a required entry.

• Monitor — Specifies the unique name of a Monitor section. This is a required entry.

• DefaultDepth — Specifies the default color depth in bits. In the previous example, 16, which
provides thousands of colors, is the default. Multiple DefaultDepth entries are permitted, but at
least one is required.

• SubSection "Display" — Specifies the screen modes available at a particular color depth. A
Screen section may have multiple Display subsections, but at least one is required for the color
depth specified in the DefaultDepth entry.

Chapter 7. The X Window System 93

• Option "<option-name>" — An optional entry which specifies extra parameters for the sec-
tion. Replace <option-name> with a valid option listed for this section in the xorg.confman
page.

7.3.1.10. DRI
The optional DRI section specifies parameters for the Direct Rendering Infrastructure (DRI). DRI is
an interface which allows 3D software applications to take advantage of 3D hardware acceleration
capabilities built into most modern video hardware. In addition, DRI can improve 2D performance
via hardware acceleration, if supported by the video card driver.

This section is ignored unless DRI is enabled in the Module section.

The following example illustrates a typical DRI section:

Section "DRI"
Group 0
Mode 0666

EndSection

Since different video cards use DRI in different ways, do not alter the values for this section without
first referring to http://dri.sourceforge.net/.

7.4. Fonts
Red Hat Enterprise Linux uses two methods to manage and display fonts under X. The newer Font-
config font subsystem simplifies font management and provides advanced display features, such as
anti-aliasing. This system is used automatically for applications programmed using the Qt 3 or GTK+
2 graphical toolkit.

For compatibility, Red Hat Enterprise Linux includes the original font subsystem, called the core X
font subsystem. This system, which is over 15 years old, is based around the X Font Server (xfs).

This section discusses how to configure fonts for X using both systems.

7.4.1. Fontconfig
The Fontconfig font subsystem allows applications to directly access fonts on the system and use
Xft or other rendering mechanisms to render Fontconfig fonts with advanced anti-aliasing. Graphical
applications can use the Xft library with Fontconfig to draw text to the screen.

Over time, the Fontconfig/Xft font subsystem replaces the core X font subsystem.

Important

The Fontconfig font subsystem does not yet work for OpenOffice.org, which uses its own font ren-
dering technology.

It is important to note that Fontconfig uses the /etc/fonts/fonts.conf configuration file, and
should not be edited by hand.

94 Chapter 7. The X Window System

Tip

Due to the transition to the new font system, GTK+ 1.2 applications are not affected by any changes
made via the Font Preferences dialog (accessed by selecting Main Menu Button [on the Panel] =>
Preferences => Font). For these applications, a font can be configured by adding the following lines
to the file ~/.gtkrc.mine:

style "user-font" {

fontset = "<font-specification>"

}

widget_class "*" style "user-font"

Replace <font-specification> with a font specification in the style used by traditional X ap-
plications, such as -adobe-helvetica-medium-r-normal--*-120-*-*-*-*-*-*. A full list of core
fonts can be obtained by running xlsfonts or created interactively using the xfontsel command.

7.4.1.1. Adding Fonts to Fontconfig
Adding new fonts to the Fontconfig subsystem is a straightforward process.

1. To add fonts system-wide, copy the new fonts into the /usr/share/fonts/ directory. It is a
good idea to create a new subdirectory, such as local/ or similar, to help distinguish between
user and default installed fonts.

To add fonts for an individual user, copy the new fonts into the .fonts/ directory in the user’s
home directory.

2. Use the fc-cache command to update the font information cache, as in the following example:
fc-cache <path-to-font-directory>

In this command, replace <path-to-font-directory> with the directory containing
the new fonts (either /usr/share/fonts/local/ or /home/<user>/.fonts/).

Tip

Individual users may also install fonts graphically, by typing fonts:/// into the Nautilus address bar,
and dragging the new font files there.

Important

If the font file name ends with a .gz extension, it is compressed and cannot be used until uncom-
pressed. To do this, use the gunzip command or double-click the file and drag the font to a directory
in Nautilus.

Chapter 7. The X Window System 95

7.4.2. Core X Font System
For compatibility, Red Hat Enterprise Linux provides the core X font subsystem, which uses the X
Font Server (xfs) to provide fonts to X client applications.

The X server looks for a font server specified in the FontPath directive within the Files section of
the /etc/X11/xorg.conf configuration file. Refer to Section 7.3.1.4 Files for more information
about the FontPath entry.

The X server connects to the xfs server on a specified port to acquire font information. For this reason,
the xfs service must be running for X to start. For more about configuring services for a particular
runlevel, refer to the chapter titled Controlling Access to Services in the Red Hat Enterprise Linux
System Administration Guide.

7.4.2.1. xfs Configuration
The /etc/rc.d/init.d/xfs script starts the xfs server. Several options can be configured within
its configuration file, /etc/X11/fs/config.

The following lists common options:

• alternate-servers — Specifies a list of alternate font servers to be used if this font server is
not available. A comma must seperate each font server in a list.

• catalogue — Specifies an ordered list of font paths to use. A comma must seperate each font path
in a list.

Use the string :unscaled immediately after the font path to make the unscaled fonts in that path
load first. Then specify the entire path again, so that other scaled fonts are also loaded.

• client-limit — Specifies the maximum number of clients the font server services. The default
is 10.

• clone-self — Allows the font server to clone a new version of itself when the client-limit
is hit. By default, this option is on.

• default-point-size — Specifies the default point size for any font that does not specify this
value. The value for this option is set in decipoints. The default of 120 corresponds to a 12 point
font.

• default-resolutions — Specifies a list of resolutions supported by the X server. Each resolu-
tion in the list must be separated by a comma.

• deferglyphs — Specifies whether to defer loading glyphs (the graphic used to visually represent
a font). To disable this feature use none, to enable this feature for all fonts use all, or to turn this
this feature on only for 16-bit fonts use 16.

• error-file — Specifies the path and file name of a location where xfs errors are logged.

• no-listen — Prevents xfs from listening to particular protocols. By default, this option is set to
tcp to prevent xfs from listening on TCP ports for security reasons.

Tip

If using xfs to serve fonts over the network, remove this line.

• port — Specifies the TCP port that xfs listens on if no-listen does not exist or is commented
out.

• use-syslog — Specifies whether to use the system error log.

96 Chapter 7. The X Window System

7.4.2.2. Adding Fonts to xfs

To add fonts to the core X font subsystem (xfs), follow these steps:

1. If it does not already exist, create a directory called /usr/share/fonts/local/ using the
following command as root:
mkdir /usr/share/fonts/local/

If creating the /usr/share/fonts/local/ directory is necessary, it must be added to the
xfs path using the following command as root:
chkfontpath --add /usr/share/fonts/local/

2. Copy the new font file into the /usr/share/fonts/local/ directory

3. Update the font information by issuing the following command as root:
ttmkfdir -d /usr/share/fonts/local/ -o /usr/share/fonts/local/fonts.scale

4. Reload the xfs font server configuration file by issuing the following command as root:
service xfs reload

7.5. Runlevels and X
In most cases, the default installation of Red Hat Enterprise Linux configures a machine to boot into
a graphical login environment, known as runlevel 5. It is possible, however, to boot into the text-only
multi-user mode called runlevel 3 and begin an X session from there.

For more information about runlevels, refer to Section 1.4 SysV Init Runlevels.

The following subsections review how X starts up in both runlevel 3 and runlevel 5.

7.5.1. Runlevel 3
When in runlevel 3, the best way to start an X session is to log in and type startx. The startx
command is a front-end to the xinit command, which launches the X server (Xorg) and connects
X client applications to it. Because the user is already logged into the system at runlevel 3, startx
does not launch a display manager or authenticate users. Refer to Section 7.5.2 Runlevel 5 for more
information about display managers.

When the startx command is executed, it searches for an .xinitrc file in the user’s home directory
to define the desktop environment and possibly other X client applications to run. If no .xinitrc file
is present, it uses the system default /etc/X11/xinit/xinitrc file instead.

The default xinitrc script then looks for user-defined files and default system files, including
.Xresources, .Xmodmap, and .Xkbmap in the user’s home directory, and Xresources, Xmodmap,
and Xkbmap in the /etc/X11/ directory. The Xmodmap and Xkbmap files, if they exist, are used by
the xmodmap utility to configure the keyboard. The Xresources file is read to assign specific
preference values to applications.

After setting these options, the xinitrc script executes all scripts located in the
/etc/X11/xinit/xinitrc.d/ directory. One important script in this directory is xinput, which
configures settings such as the default language.

Next, the xinitrc script tries to execute .Xclients in the user’s home directory and turns to
/etc/X11/xinit/Xclients if it cannot be found. The purpose of the Xclients file is to start
the desktop environment or, possibly, just a basic window manager. The .Xclients script in the
user’s home directory starts the user-specified desktop environment in the .Xclients-default file.
If .Xclients does not exist in the user’s home directory, the standard /etc/X11/xinit/Xclients

Chapter 7. The X Window System 97

script attempts to start another desktop environment, trying GNOME first and then KDE followed by
twm.

The user is returned to a text mode user session after logging out of X from runlevel 3.

7.5.2. Runlevel 5
When the system boots into runlevel 5, a special X client application, called a display manager, is
launched. A user must authenticate using the display manager before any desktop environment or
window managers are launched.

Depending on the desktop environments installed on the system, three different display managers are
available to handle user authentication.

• GNOME — The default display manager for Red Hat Enterprise Linux, GNOME allows the user to
configure language settings, shutdown, restart or log in to the system.

• KDE — KDE’s display manager which allows the user to shutdown, restart or log in to the system.

• xdm — A very basic display manager which only lets the user log in to the system.

When booting into runlevel 5, the prefdm script determines the preferred display manager by refer-
encing the /etc/sysconfig/desktop file. A list of options for this file is available within the

/usr/share/doc/initscripts-<version-number>/
sysconfig.txt

file (where <version-number> is the version number of the initscripts package).

Each of the display managers reference the /etc/X11/xdm/Xsetup_0 file to set up the login screen.
Once the user logs into the system, the /etc/X11/xdm/GiveConsole script runs to assign owner-
ship of the console to the user. Then, the /etc/X11/xdm/Xsession script runs to accomplish many
of the tasks normally performed by the xinitrc script when starting X from runlevel 3, including set-
ting system and user resources, as well as running the scripts in the /etc/X11/xinit/xinitrc.d/
directory.

Users can specify which desktop environment they want to utilize when they authenticate using the
GNOME or KDE display managers by selecting it from the Sessions menu item (accessed by selecting
Main Menu Button [on the Panel] => Preferences => More Preferences => Sessions). If the desktop
environment is not specified in the display manager, the /etc/X11/xdm/Xsession script checks the
.xsession and .Xclients files in the user’s home directory to decide which desktop environment
to load. As a last resort, the /etc/X11/xinit/Xclientsfile is used to select a desktop environment
or window manager to use in the same way as runlevel 3.

When the user finishes an X session on the default display (:0) and logs out, the
/etc/X11/xdm/TakeConsole script runs and reassigns ownership of the console to the root user.
The original display manager, which continued running after the user logged in, takes control by
spawning a new display manager. This restarts the X server, displays a new login window, and starts
the entire process over again.

The user is returned to the display manager after logging out of X from runlevel 5.

For more information on how display managers control user authentication, refer to the
/usr/share/doc/gdm-<version-number>/README (where <version-number> is the
version number for the gdm package installed) and the xdm man page.

98 Chapter 7. The X Window System

7.6. Additional Resources
There is a large amount of detailed information available about the X server, the clients that connect
to it, and the assorted desktop environments and window managers.

7.6.1. Installed Documentation

• /usr/X11R6/lib/X11/doc/README — Briefly describes the XFree86 architecture and how to
get additional information about the XFree86 project as a new user.

• /usr/X11R6/lib/X11/doc/RELNOTES — For advanced users that want to read about the latest
features available in XFree86.

• man xorg.conf — Contains information about the xorg.conf configuration files, including the
meaning and syntax for the different sections within the files.

• man X.Org — The primary man page for X.Org Foundation information.

• man Xorg — Describes the X11R6.8 display server.

7.6.2. Useful Websites

• http://www.X.org/ — Home page of the X.Org Foundation, which produces the X11R6.8 release of
the X Window System. The X11R6.8 release is bundled with Red Hat Enterprise Linux to control
the necessary hardware and provide a GUI environment.

• http://xorg.freedesktop.org/ — Home page of the XR116.8 release, which provides binaries and
documention for the X Window System.

• http://dri.sourceforge.net/ — Home page of the DRI (Direct Rendering Infrastructure) project. The
DRI is the core hardware 3D acceleration component of X.

• http://www.gnome.org/ — Home of the GNOME project.

• http://www.kde.org/ — Home of the KDE desktop environment.

• http://nexp.cs.pdx.edu/fontconfig/ — Home of the Fontconfig font subsystem for X.

7.6.3. Related Books

• The Concise Guide to XFree86 for Linux by Aron Hsiao; Que — Provides an expert’s view of the
operation of XFree86 on Linux systems.

• The New XFree86 by Bill Ball; Prima Publishing — Discuses XFree86 and its relationship with the
popular desktop environments, such as GNOME and KDE.

• Beginning GTK+ and GNOME by Peter Wright; Wrox Press, Inc. — Introduces programmers to
the GNOME architecture, showing them how to get started with GTK+.

• GTK+/GNOME Application Development by Havoc Pennington; New Riders Publishing — An
advanced look into the heart of GTK+ programming, focusing on sample code and a thorough look
at the available APIs.

• KDE 2.0 Development by David Sweet and Matthias Ettrich; Sams Publishing — Instructs begin-
ning and advanced developers on taking advantage of the many environment guidelines required to
built QT applications for KDE.

II. Network Services Reference

It is possible to deploy a wide variety of network services under Red Hat Enterprise Linux. This part
describes how network interfaces are configured as well as provides details about critical network
services such as FTP, NFS, the Apache HTTP Server, Sendmail, Postfix, Exim, Fetchmail, Procmail,
BIND, LDAP, and Samba.

Table of Contents
8. Network Interfaces.. 101
9. Network File System (NFS).. 111
10. Apache HTTP Server.. 125
11. Email .. 159
12. Berkeley Internet Name Domain (BIND) ... 181
13. Lightweight Directory Access Protocol (LDAP) .. 201
14. Samba... 213
15. FTP... 237

Chapter 8.
Network Interfaces

Under Red Hat Enterprise Linux, all network communications occur between configured software
interfaces and physical networking devices connected to the system.

The configuration files for network interfaces, and the scripts used to activate and deactivate them,
are located in the /etc/sysconfig/network-scripts/ directory. Although the number and type
of interface files can differ from system to system, there are three categories of files that exist in this
directory:

• Interface configuration files

• Interface control scripts

• Network function files

The files in each of these categories work together to enable various network devices.

This chapter explores the relationship between these files and how they are used.

8.1. Network Configuration Files
Before delving into the interface configuration files, let us first itemize the primary configuration files
used in network configuration. Understanding the role these files play in setting up the network stack
can be helpful when customizing a Red Hat Enterprise Linux system.

The primary network configuration files are as follows:

• /etc/hosts — The main purpose of this file is to resolve hostnames that cannot be resolved any
other way. It can also be used to resolve hostnames on small networks with no DNS server. Re-
gardless of the type of network the computer is on, this file should contain a line specifying the IP
address of the loopback device (127.0.0.1) as localhost.localdomain. For more informa-
tion, refer to the hosts man page.

• /etc/resolv.conf— This file specifies the IP addresses of DNS servers and the search domain.
Unless configured to do otherwise, the network initialization scripts populate this file. For more
information about this file, refer to the resolv.conf man page.

• /etc/sysconfig/network — Specifies routing and host information for all network
interfaces. For more information about this file and the directives it accepts, refer to
Section 4.1.25 /etc/sysconfig/network.

• /etc/sysconfig/network-scripts/ifcfg-<interface-name> — For each network in-
terface, there is a corresponding interface configuration script. Each of these files provide informa-
tion specific to a particular network interface. Refer to Section 8.2 Interface Configuration Files for
more information on this type of file and the directives it accepts.

Caution

The /etc/sysconfig/networking/ directory is used by the Network Administration Tool
(system-config-network) and its contents should not be edited manually. In addition, any use of
the Network Administration Tool, even launching the application, will override any directives
previously set in /etc/sysconfig/network-scripts. Using only one method for network
configuration is strongly encouraged, due to the risk of configuration deletion.

102 Chapter 8. Network Interfaces

For more information about configuring network interfaces using the Network Administration Tool,
refer to the chapter titled Network Configuration in the Red Hat Enterprise Linux System Administra-
tion Guide.

8.2. Interface Configuration Files
Interface configuration files control the software interfaces for individual network devices. As the
system boots, it uses these files to determine what interfaces to bring up and how to configure them.
These files are usually named ifcfg-<name>, where <name> refers to the name of the device that
the configuration file controls.

8.2.1. Ethernet Interfaces
One of the most common interface files is ifcfg-eth0, which controls the first Ethernet network in-
terface card or NIC in the system. In a system with multiple NICs, there are multiple ifcfg-eth<X>

files (where <X> is a unique number corresponding to a specific interface). Because each device has
its own configuration file, an administrator can control how each interface functions individually.

The following is a sample ifcfg-eth0 file for a system using a fixed IP address:

DEVICE=eth0
BOOTPROTO=none
ONBOOT=yes
NETWORK=10.0.1.0
NETMASK=255.255.255.0
IPADDR=10.0.1.27
USERCTL=no

The values required in an interface configuration file can change based on other values. For example,
the ifcfg-eth0 file for an interface using DHCP looks quite a bit different because IP information
is provided by the DHCP server:

DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes

The Network Administration Tool (system-config-network) is an easy way to make changes
to the various network interface configuration files (refer to the chapter titled Network Configuration
in the Red Hat Enterprise Linux System Administration Guide for detailed instructions on using this
tool).

However, it is also possible to edit the configuration files for a given network interface manually.

Below is a listing of the configurable parameters in an Ethernet interface configuration file:

• BOOTPROTO=<protocol>, where <protocol> is one of the following:

• none — No boot-time protocol should be used.

• bootp — The BOOTP protocol should be used.

• dhcp — The DHCP protocol should be used.

• BROADCAST=<address>, where <address> is the broadcast address. This directive is depre-
cated, as the value is calculated automatically with ifcalc.

Chapter 8. Network Interfaces 103

• DEVICE=<name>, where <name> is the name of the physical device (except for dynamically-
allocated PPP devices where it is the logical name).

• DHCP_HOSTNAME — Only use this option if the DHCP server requires the client to specify a host-
name before receiving an IP address. (The DHCP server daemon in Red Hat Enterprise Linux does
not support this feature.)

• DNS{1,2}=<address>, where <address> is a name server address to be placed in
/etc/resolv.conf if the PEERDNS directive is set to yes.

• ETHTOOL_OPTS=<options>, where <options> are any device-specific options supported by
ethtool. For example, if you wanted to force 100Mb, full duplex:
ETHTOOL_OPTS="autoneg off speed 100 duplex full"

Note that changing speed or duplex settings almost always requires disabling autonegotiation with
the autoneg off option. This needs to be stated first, as the option entries are order dependent.

• GATEWAY=<address>, where <address> is the IP address of the network router or gateway
device (if any).

• HWADDR=<MAC-address>, where <MAC-address> is the hardware address of the Ethernet
device in the form AA:BB:CC:DD:EE:FF. This directive is useful for machines with multiple
NICs to ensure that the interfaces are assigned the correct device names regardless of the configured
load order for each NIC’s module. This directive should not be used in conjunction with MACADDR.

• IPADDR=<address>, where <address> is the IP address.

• MACADDR=<MAC-address>, where <MAC-address> is the hardware address of the Ethernet
device in the form AA:BB:CC:DD:EE:FF. This directive is used to assign a MAC address to
an interface, overriding the one assigned to the physical NIC. This directive should not be used in
conjunction with HWADDR.

• MASTER=<bond-interface>,where <bond-interface> is the channel bonding interface to
which the interface the Ethernet interface is linked.

This directive is used in conjunction with the SLAVE directive.

Refer to Section 8.2.3 Channel Bonding Interfaces for more about channel bonding interfaces.

• NETMASK=<mask>, where <mask> is the netmask value.

• NETWORK=<address>, where <address> is the network address. This directive is deprecated,
as the value is calculated automatically with ifcalc.

• ONBOOT=<answer>, where <answer> is one of the following:

• yes — This device should be activated at boot-time.

• no — This device should not be activated at boot-time.

• PEERDNS=<answer>, where <answer> is one of the following:

• yes — Modify /etc/resolv.conf if the DNS directive is set. If using DHCP, then yes is the
default.

• no — Do not modify /etc/resolv.conf.

• SLAVE=<bond-interface>,where <bond-interface> is one of the following:

• yes — This device is controlled by the channel bonding interface specified in the MASTER direc-
tive.

• no — This device is not controlled by the channel bonding interface specified in the MASTER
directive.

This directive is used in conjunction with the MASTER directive.

104 Chapter 8. Network Interfaces

Refer to Section 8.2.3 Channel Bonding Interfaces for more about channel bond interfaces.

• SRCADDR=<address>, where <address> is the specified source IP address for outgoing pack-
ets.

• USERCTL=<answer>, where <answer> is one of the following:

• yes — Non-root users are allowed to control this device.

• no — Non-root users are not allowed to control this device.

8.2.2. IPsec Interfaces
With Red Hat Enterprise Linux it is possible to connect to other hosts or networks using a secure IP
connection, known as IPsec. For instructions on setting up IPsec using the Network Administration
Tool (system-config-network), refer to the chapter titled Network Configuration in the Red Hat
Enterprise Linux System Administration Guide. For instructions on setting up IPsec manually, refer to
the chapter titled Virtual Private Networks in the Red Hat Enterprise Linux Security Guide.

The following example shows the ifcfg file for a network-to-network IPsec connection for LAN A.
The unique name to identify the connection in this example is ipsec1, so the resulting file is named
/etc/sysconfig/network-scripts/ifcfg-ipsec1.

TYPE=IPsec
ONBOOT=yes
IKE_METHOD=PSK
SRCNET=192.168.1.0/24
DSTNET=192.168.2.0/24
DST=X.X.X.X

In the example above, X.X.X.X is the publicly routable IP address of the destination IPsec router.

Below is a listing of the configurable parameters for an IPsec interface:

• DST=<address>, where <address> is the IP address of the IPsec destination host or router.
This is used for both host-to-host and network-to-network IPsec configurations.

• DSTNET=<network>, where <network> is the network address of the IPsec destination net-
work. This is only used for network-to-network IPsec configurations.

• SRC=<address>, where <address> is the IP address of the IPsec source host or router. This
setting is optional and is only used for host-to-host IPsec configurations.

• SRCNET=<network>, where <network> is the network address of the IPsec source network.
This is only used for network-to-network IPsec configurations.

• TYPE=<interface-type>, where <interface-type> is IPSEC. Both applications are part
of the ipsec-tools package.

Refer to /usr/share/doc/initscripts-<version-number>/sysconfig.txt (replace
<version-number> with the version of the initscripts package installed) for configuration
parameters if using manual key encryption with IPsec.

The racoon IKEv1 key management daemon negotiates and configures a set of parameters for IPSec.
It can use preshared keys, RSA signatures, or GSS-API. If racoon is used to automatically manage
key encryption, the following options are required:

• IKE_METHOD=<encryption-method>, where <encryption-method> is either PSK,
X509, or GSSAPI. If PSK is specified, the IKE_PSK parameter must also be set. If X509 is
specified, the IKE_CERTFILE parameter must also be set.

Chapter 8. Network Interfaces 105

• IKE_PSK=<shared-key>, where <shared-key> is the shared, secret value for the PSK (pre-
shared keys) method.

• IKE_CERTFILE=<cert-file>, where <cert-file> is a valid X.509 certificate file for the
host.

• IKE_PEER_CERTFILE=<cert-file>, where <cert-file> is a valid X.509 certificate file
for the remote host.

• IKE_DNSSEC=<answer>, where <answer> is yes. The racoon daemon retrieves the remote
host’s X.509 certificate via DNS. If a IKE_PEER_CERTFILE is specified, do not include this pa-
rameter.

For more information about the encryption algorithms available for IPsec, refer to the setkey man
page. For more information about racoon, refer to the racoon and racoon.conf man pages.

8.2.3. Channel Bonding Interfaces
Red Hat Enterprise Linux allows administrators to bind multiple network interfaces together into a
single channel using the bonding kernel module and a special network interface called a channel
bonding interface. Channel bonding enables two or more network interfaces to act as one, simultane-
ously increasing the bandwidth and providing redundancy.

To create a channel bonding interface, create a file in the /etc/sysconfig/network-scripts/
directory called ifcfg-bond<N>, replacing <N> with the number for the interface, such as 0.

The contents of the file can be identical to whatever type of interface that is getting bonded, such as
an Ethernet interface. The only difference is that the DEVICE= directive must be bond<N>, replacing
<N> with the number for the interface.

The following is a sample channel bonding configuration file:

DEVICE=bond0
BOOTPROTO=none
ONBOOT=yes
NETWORK=10.0.1.0
NETMASK=255.255.255.0
IPADDR=10.0.1.27
USERCTL=no

After the channel bonding interface is created, the network interfaces to be bound together must be
configured by adding the MASTER= and SLAVE= directives to their configuration files. The configura-
tion files for each of the channel bonded interfaces can be nearly identical.

For example, if channel bonding two Ethernet interfaces, both eth0 and eth1 may look like the
following example:

DEVICE=eth<N>

BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
USERCTL=no

In this example, replace <N> with the numerical value for the interface.

For a channel bonding interface to be valid, the kernel module must be loaded. To insure that the
module is loaded when the channel bonding interface is brought up, add the following line to
/etc/modules.conf:

alias bond<N> bonding

106 Chapter 8. Network Interfaces

Replace <N> with the number of the interface, such as 0. For each configured channel bonding
interface, there must be a corresponding entry in /etc/modules.conf.

Once /etc/modules.conf is configured, and the channel bonding interface and network interfaces
are configured, the ifup command can be used to bring up the channel bonding interface.

Important

Important aspects of the channel bonding interface are controlled through the kernel
module. For more information about controlling the bonding modules, refer to
Section A.3.2 The Channel Bonding Module.

8.2.4. Alias and Clone Files
Two lesser-used types of interface configuration files are alias and clone files.

Alias interface configuration files, which are used to bind multiple addresses to a single interface, use
the ifcfg-<if-name>:<alias-value> naming scheme.

For example, an ifcfg-eth0:0 file could be configured to specify DEVICE=eth0:0 and a static
IP address of 10.0.0.2, serving as an alias of an Ethernet interface already configured to receive its
IP information via DHCP in ifcfg-eth0. Under this configuration, eth0 is bound to a dynamic IP
address, but the same physical network card can receive request via the fixed, 10.0.0.2 IP address.

Caution

Alias interfaces do not support DHCP.

A clone interface configuration file should use the following naming convention:
ifcfg-<if-name>-<clone-name>. While an alias file allows multiple addresses for an existing
interface, a clone file is used to specify additional options for an interface. For example, a standard
DHCP Ethernet interface called eth0, may look similar to this:

DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp

Since the default value for the USERCTL directive is no if it is not specified, users cannot bring this
interface up and down. To give users the ability to control the interface, create a clone by copying
ifcfg-eth0 to ifcfg-eth0-user and add the following line to ifcfg-eth0-user:

USERCTL=yes

This way a user can bring up the eth0 interface using the /sbin/ifup eth0-user command be-
cause the configuration options from ifcfg-eth0 and ifcfg-eth0-user are combined. While this
is a very basic example, this method can be used with a variety of options and interfaces.

The easiest way to create alias and clone interface configuration files is to use the graphical Network
Administration Tool. For more on using this tool, refer to the chapter called Network Configuration
in the Red Hat Enterprise Linux System Administration Guide.

Chapter 8. Network Interfaces 107

8.2.5. Dialup Interfaces
If connecting to the Internet via a dialup connection, a configuration file is necessary for the interface.

PPP interface files are named using the following format ifcfg-ppp<X> (where <X> is a unique
number corresponding to a specific interface).

The PPP interface configuration file is created automatically when wvdial, the Network Adminis-
tration Tool or Kppp is used to create a dialup account. It is also possible to create and edit this file
manually.

The following is a typical ifcfg-ppp0 file:

DEVICE=ppp0
NAME=test
WVDIALSECT=test
MODEMPORT=/dev/modem
LINESPEED=115200
PAPNAME=test
USERCTL=true
ONBOOT=no
PERSIST=no
DEFROUTE=yes
PEERDNS=yes
DEMAND=no
IDLETIMEOUT=600

Serial Line Internet Protocol (SLIP) is another dialup interface, although it is used less frequently.
SLIP files have interface configuration file names such as ifcfg-sl0.

Other options, not already discussed, that may be used in these files include:

• DEFROUTE=<answer>, where <answer> is one of the following:

• yes — Set this interface as the default route.

• no — Do not set this interface as the default route.

• DEMAND=<answer>, where <answer> is one of the following:

• yes — This interface allows pppd to initiate a connection when someone attempts to use it.

• no — A connection must be manually established for this interface.

• IDLETIMEOUT=<value>, where <value> is the number of seconds of idle activity before the
interface disconnects itself.

• INITSTRING=<string>, where <string> is the initialization string passed to the modem de-
vice. This option is primarily used in conjunction with SLIP interfaces.

• LINESPEED=<value>, where <value> is the baud rate of the device. Possible standard values
include 57600, 38400, 19200, and 9600.

• MODEMPORT=<device>, where <device> is the name of the serial device that is used to estab-
lish the connection for the interface.

• MTU=<value>, where <value> is the Maximum Transfer Unit (MTU) setting for the interface.
The MTU refers to the largest number of bytes of data a frame can carry, not counting its header
information. In some dialup situations, setting this to a value of 576 results in fewer packets dropped
and a slight improvement to the throughput for a connection.

108 Chapter 8. Network Interfaces

• NAME=<name>, where <name> is the reference to the title given to a collection of dialup connec-
tion configurations.

• PAPNAME=<name>, where <name> is the username given during the Password Authentication
Protocol (PAP) exchange that occurs to allow connections to a remote system.

• PERSIST=<answer>, where <answer> is one of the following:

• yes — This interface should be kept active at all times, even if deactivated after a modem hang
up.

• no — This interface should not be kept active at all times.

• REMIP=<address>, where <address> is the remote system’s IP address. This is usually left
unspecified.

• WVDIALSECT=<name>, where <name> associates this interface with a dialer configuration in
/etc/wvdial.conf. This file contains the phone number to be dialed and other important infor-
mation for the interface.

8.2.6. Other Interfaces
Other common interface configuration files include the following:

• ifcfg-lo — A local loopback interface is often used in testing, as well as being used in a variety
of applications that require an IP address pointing back to the same system. Any data sent to the
loopback device is immediately returned to the host’s network layer.

Warning

Never edit the loopback interface script, /etc/sysconfig/network-scripts/ifcfg-lo, manu-
ally. Doing so can prevent the system from operating correctly.

• ifcfg-irlan0 — An infrared interface allows information between devices, such as a laptop and
a printer, to flow over an infrared link. This works in a similar way to an Ethernet device except that
it commonly occurs over a peer-to-peer connection.

• ifcfg-plip0 — A Parallel Line Interface Protocol (PLIP) connection works much the same way
as an Ethernet device, except that it utilizes a parallel port.

• ifcfg-tr0 — Token Ring topologies are not as common on Local Area Networks (LANs) as they
once were, having been eclipsed by Ethernet.

8.3. Interface Control Scripts
The interface control scripts activate and deactivated system interfaces. There are two primary in-
terface control scripts, /sbin/ifdown and /sbin/ifup, that call on control scripts located in the
/etc/sysconfig/network-scripts/ directory.

The ifup and ifdown interface scripts are symbolic links to scripts in the /sbin/ directory. When
either of these scripts are called, they require the value of the interface to be specified, such as:

ifup eth0

Chapter 8. Network Interfaces 109

Caution

The ifup and ifdown interface scripts are the only scripts that the user should use to bring up and
take down network interfaces.

The following scripts are described for reference purposes only.

Two files used to perform a variety of network initialization tasks during the
process of bringing up a network interface are /etc/rc.d/init.d/functions
and /etc/sysconfig/network-scripts/network-functions. Refer to
Section 8.4 Network Function Files for more information.

After verifying that an interface has been specified and that the user executing the request is allowed
to control the interface, the correct script brings the interface up or down. The following are common
interface control scripts found within the /etc/sysconfig/network-scripts/ directory:

• ifup-aliases — Configures IP aliases from interface configuration files when more than one IP
address is associated with an interface.

• ifup-ippp and ifdown-ippp — Brings ISDN interfaces up and down.

• ifup-ipsec and ifdown-ipsec — Brings IPsec interfaces up and down.

• ifup-ipv6 and ifdown-ipv6 — Brings IPv6 interfaces up and down.

• ifup-ipx — Brings up an IPX interface.

• ifup-plip — Brings up a PLIP interface.

• ifup-plusb — Brings up a USB interface for network connections.

• ifup-post and ifdown-post— Contains commands to be executed after an interface is brought
up or down.

• ifup-ppp and ifdown-ppp — Brings a PPP interface up or down.

• ifup-routes — Adds static routes for a device as its interface is brought up.

• ifdown-sit and ifup-sit — Contains function calls related to bringing up and down an IPv6
tunnel within an IPv4 connection.

• ifup-sl and ifdown-sl — Brings a SLIP interface up or down.

• ifup-wireless — Brings up a wireless interface.

Warning

Removing or modifying any scripts in the /etc/sysconfig/network-scripts/ directory can cause
interface connections to act irregularly or fail. Only advanced users should modify scripts related to a
network interface.

The easiest way to manipulate all network scripts simultaneously is to use the /sbin/service
command on the network service (/etc/rc.d/init.d/network), as illustrated the following com-
mand:

/sbin/service network <action>

In this example, <action> can be either start, stop, or restart.

To view a list of configured devices and currently active network interfaces, use the following com-
mand:

110 Chapter 8. Network Interfaces

/sbin/service network status

8.4. Network Function Files
Red Hat Enterprise Linux makes use of several files that contain important common functions used to
bring interfaces up and down. Rather than forcing each interface control file to contain these functions,
they are grouped together in a few files that are called upon when necessary.

The /etc/sysconfig/network-scripts/network-functions file contains the most
commonly used IPv4 functions, which are useful to many interface control scripts. These functions
include contacting running programs that have requested information about changes in an interface’s
status, setting hostnames, finding a gateway device, verifying whether or not if a particular device is
down, and adding a default route.

As the functions required for IPv6 interfaces are different than IPv4 interfaces, a
/etc/sysconfig/network-scripts/network-functions-ipv6 file exists specifically to
hold this information. The functions in this file configure and delete static IPv6 routes, create and
remove tunnels, add and remove IPv6 addresses to an interface, and test for the existence of an IPv6
address on an interface.

8.5. Additional Resources
The following are resources which explain more about network interfaces.

8.5.1. Installed Documentation

• /usr/share/doc/initscripts-<version>/sysconfig.txt — A guide to available op-
tions for network configuration files, including IPv6 options not covered in this chapter.

• /usr/share/doc/iproute-<version>/ip-cref.ps— This file contains a wealth of infor-
mation about the ip command, which can be used to manipulate routing tables, among other things.
Use the ggv or kghostview application to view this file.

Chapter 9.
Network File System (NFS)

A Network File System (NFS) allows remote hosts to mount file systems over a network and interact
with those file systems as though they are mounted locally. This enables system administrators to
consolidate resources onto centralized servers on the network.

This chapter focuses on fundamental NFS concepts and supplemental information. For specific in-
structions regarding the configuration and operation of NFS server and client software, refer to the
chapter titled Network File System (NFS) in the Red Hat Enterprise Linux System Administration
Guide.

9.1. How It Works
Currently, there are three versions of NFS. NFS version 2 (NFSv2) is older and is widely supported.
NFS version 3 (NFSv3) has more features, including variable size file handling and better error report-
ing, but is not fully compatible with NFSv2 clients. NFS version 4 (NFSv4) includes Kerberos secu-
rity, works through firewalls and on the Internet, no longer requires portmapper, supports ACLs, and
utilizes stateful operations. Red Hat Enterprise Linux supports NFSv2, NFSv3, and NFSv4 clients,
and when mounting a file system via NFS, Red Hat Enterprise Linux uses NFSv4 by default, if the
server supports it.

All versions of NFS can use Transmission Control Protocol (TCP) running over an IP network, with
NFSv4 requiring it. NFSv2 and NFSv3 can use the User Datagram Protocol (UDP) running over an
IP network to provide a stateless network connection between the client and server.

When using NFSv2 or NFSv3 with UDP, the stateless UDP connection under normal conditions min-
imizes network traffic, as the NFS server sends the client a cookie after the client is authorized to
access the shared volume. This cookie is a random value stored on the server’s side and is passed
along with RPC requests from the client. The NFS server can be restarted without affecting the clients
and the cookie remains intact. However, because UDP is stateless, if the server goes down unexpect-
edly, UDP clients continue to saturate the network with requests for the server. For this reason, TCP
is the preferred protocol when connecting to an NFS server.

When using NFSv4, a stateful connection is made, and Kerberos user and group authentication
with various security levels is optionally available. NFSv4 has no interaction with portmapper,
rpc.mountd, rpc.lockd, and rpc.statd, since they have been rolled into the kernel. NFSv4
listens on the well known TCP port 2049.

Note

TCP is the default transport protocol for NFS under Red Hat Enterprise Linux. Refer to the chapter
titled Network File System (NFS) in the Red Hat Enterprise Linux System Administration Guide for
more information about connecting to NFS servers using TCP. UDP can be used for compatibility
purposes as needed, but is not recommended for wide usage.

The only time NFS performs authentication is when a client system attempts to mount the shared
NFS resource. To limit access to the NFS service, TCP wrappers are used. TCP wrappers read the
/etc/hosts.allow and /etc/hosts.deny files to determine if a particular client or network is
permitted or denied access to the NFS service. For more information on configuring access controls
with TCP wrappers, refer to Chapter 17 TCP Wrappers and xinetd.

112 Chapter 9. Network File System (NFS)

After the client is granted access by TCP wrappers, the NFS server refers to its configuration file,
/etc/exports, to determine whether the client is allowed to access any of the exported file systems.
Once access is granted, all file and directory operations are available to the user.

Warning

If using NFSv2 or NFSv3, which do not support Kerberos authentication, NFS mount privileges are
granted to the client host, not the user. Therefore, exported file systems can be accessed by any user
on a client host with access permissions. When configuring the NFS shares, be very careful which
hosts get read/write permissions (rw).

Important

In order for NFS to work with a default installation of Red Hat Enterprise Linux with a firewall enabled,
IPTables with the default TCP port 2049 must be configured. Without an IPTables configuration, NFS
does not function properly.

The NFS initialization script and rpc.nfsd process now allow binding to any specified port during
system start up. However, this can be error prone if the port is unavailable or conflicts with another
daemon.

9.1.1. Required Services
Red Hat Enterprise Linux uses a combination of kernel-level support and daemon processes to provide
NFS file sharing. NFSv2 and NFSv3 rely on Remote Procedure Calls (RPC) to encode and decode
requests between clients and servers. RPC services under Linux are controlled by the portmap ser-
vice. To share or mount NFS file systems, the following services work together, depending on which
version of NFS is implemented:

• nfs — Starts the appropriate RPC processes to service requests for shared NFS file systems.

• nfslock — An optional service that starts the appropriate RPC processes to allow NFS clients to
lock files on the server.

• portmap — The RPC service for Linux; it responds to requests for RPC services and sets up
connections to the requested RPC service. This is not used with NFSv4.

The following RPC processes facilitate NFS services:

• rpc.mountd — This process receives mount requests from NFS clients and verifies the requested
file system is currently exported. This process is started automatically by the nfs service and does
not require user configuration. This is not used with NFSv4.

• rpc.nfsd — This process is the NFS server. It works with the Linux kernel to meet the dynamic
demands of NFS clients, such as providing server threads each time an NFS client connects. This
process corresponds to the nfs service.

• rpc.lockd — An optional process that allows NFS clients to lock files on the server. This process
corresponds to the nfslock service. This is not used with NFSv4.

• rpc.statd — This process implements the Network Status Monitor (NSM) RPC protocol which
notifies NFS clients when an NFS server is restarted without being gracefully brought down. This
process is started automatically by the nfslock service and does not require user configuration.
This is not used with NFSv4.

Chapter 9. Network File System (NFS) 113

• rpc.rquotad — This process provides user quota information for remote users. This process is
started automatically by the nfs service and does not require user configuration.

• rpc.idmapd — This process provides NFSv4 client and server upcalls which map between on-
the-wire NFSv4 names (which are strings in the form of user@domain) and local UIDs and GIDs.
For idmapd to function with NFSv4, the /etc/idmapd.conf must be configured. This service is
required for use with NFSv4.

• rpc.svcgssd — This process provides the server transport mechanism for the authentication pro-
cess (Kerberos Version 5) with NFSv4. This service is required for use with NFSv4.

• rpc.gssd — This process provides the client transport mechanism for the authentication process
(Kerberos Version 5) with NFSv4. This service is required for use with NFSv4.

9.1.2. NFS and portmap

Note

The following section only applies to NFSv2 or NFSv3 implementations that require the portmap
service for backward compatibility.

The portmap service under Linux maps RPC requests to the correct services. RPC processes notify
portmap when they start, revealing the port number they are monitoring and the RPC program num-
bers they expect to serve. The client system then contacts portmap on the server with a particular
RPC program number. The portmap service redirects the client to the proper port number so it can
communicate with the requested service.

Because RPC-based services rely on portmap to make all connections with incoming client requests,
portmap must be available before any of these services start.

The portmap service uses TCP wrappers for access control, and access control rules for portmap
affect all RPC-based services. Alternatively, it is possible to specify access control rules for each of the
NFS RPC daemons. The man pages for rpc.mountd and rpc.statd contain information regarding
the precise syntax for these rules.

9.1.2.1. Troubleshooting NFS and portmap

Because portmap provides coordination between RPC services and the port numbers used to com-
municate with them, it is useful to view the status of current RPC services using portmap when
troubleshooting. The rpcinfo command shows each RPC-based service with port numbers, an RPC
program number, a version number, and an IP protocol type (TCP or UDP).

To make sure the proper NFS RPC-based services are enabled for portmap, issue the following
command as root:

rpcinfo -p

The following is sample output from this command:

program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100021 1 udp 32774 nlockmgr
100021 3 udp 32774 nlockmgr
100021 4 udp 32774 nlockmgr

114 Chapter 9. Network File System (NFS)

100021 1 tcp 34437 nlockmgr
100021 3 tcp 34437 nlockmgr
100021 4 tcp 34437 nlockmgr
100011 1 udp 819 rquotad
100011 2 udp 819 rquotad
100011 1 tcp 822 rquotad
100011 2 tcp 822 rquotad
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100005 1 udp 836 mountd
100005 1 tcp 839 mountd
100005 2 udp 836 mountd
100005 2 tcp 839 mountd
100005 3 udp 836 mountd
100005 3 tcp 839 mountd

The output from this command reveals that the correct NFS services are running. If one of the NFS
services does not start up correctly, portmap is unable to map RPC requests from clients for that
service to the correct port. In many cases, if NFS is not present in rpcinfo output, restarting NFS
causes the service to correctly register with portmap and begin working. For instructions on starting
NFS, refer to Section 9.2 Starting and Stopping NFS.

Other useful options are available for the rpcinfo command. Refer to the rpcinfo man page for
more information.

9.2. Starting and Stopping NFS
To run an NFS server, the portmap service must be running. To verify that portmap is active, type
the following command as root:

/sbin/service portmap status

If the portmap service is running, then the nfs service can be started. To start an NFS server, as root
type:

/sbin/service nfs start

To stop the server, as root, type:

/sbin/service nfs stop

The restart option is a shorthand way of stopping and then starting NFS. This is the most efficient
way to make configuration changes take effect after editing the configuration file for NFS.

To restart the server, as root, type:

/sbin/service nfs restart

The condrestart (conditional restart) option only starts nfs if it is currently running. This option
is useful for scripts, because it does not start the daemon if it is not running.

To conditionally restart the server, as root, type:

/sbin/service nfs condrestart

Chapter 9. Network File System (NFS) 115

To reload the NFS server configuration file without restarting the service, as root, type:

/sbin/service nfs reload

By default, the nfs service does not start automatically at boot time. To configure the NFS to start
up at boot time, use an initscript utility, such as /sbin/chkconfig, /sbin/ntsysv, or the Services
Configuration Tool program. Refer to the chapter titled Controlling Access to Services in the Red
Hat Enterprise Linux System Administration Guide for more information regarding these tools.

9.3. NFS Server Configuration
There are three ways to configure an NFS server under Red Hat Enterprise Linux: using the NFS
Server Configuration Tool (system-config-nfs), manually editing its configuration file
(/etc/exports), or using the /usr/sbin/exportfs command.

For instructions on using NFS Server Configuration Tool, refer to the chapter titled Network File
System (NFS) in the Red Hat Enterprise Linux System Administration Guide. The remainder of this
section discusses manually editing /etc/exports and using the /usr/sbin/exportfs command
to export NFS file systems.

9.3.1. The /etc/exports Configuration File
The /etc/exports file controls which file systems are exported to remote hosts and specifies op-
tions. Blank lines are ignored, comments can be made by starting a line with the hash mark (#), and
long lines can be wrapped with a backslash (\). Each exported file system should be on its own indi-
vidual line, and any lists of authorized hosts placed after an exported file system must be separated by
space characters. Options for each of the hosts must be placed in parentheses directly after the host
identifier, without any spaces separating the host and the first parenthesis.

A line for an exported file system has the following structure:

<export> <host1>(<options>) <hostN>(<options>)...

In this structure, replace <export> with the directory being exported, replace <host1> with the
host or network to which the export is being shared, and replace <options> with the options for
that host or network. Additional hosts can be specified in a space separated list.

The following methods can be used to specify host names:

• single host — Where one particular host is specified with a fully qualified domain name, hostname,
or IP address.

• wildcards — Where a * or ? character is used to take into account a grouping of fully qualified do-
main names that match a particular string of letters. Wildcards should not be used with IP addresses;
however, it is possible for them to work accidentally if reverse DNS lookups fail.

Be careful when using wildcards with fully qualified domain names, as they tend to be more exact
than expected. For example, the use of *.example.com as a wildcard allows sales.example.com
to access an exported file system, but not bob.sales.example.com. To match both possibilities both
*.example.com and *.*.example.com must be specified.

• IP networks — Allows the matching of hosts based on their IP addresses within a larger network.
For example, 192.168.0.0/28 allows the first 16 IP addresses, from 192.168.0.0 to 192.168.0.15,
to access the exported file system, but not 192.168.0.16 and higher.

• netgroups — Permits an NIS netgroup name, written as @<group-name>, to be used. This effec-
tively puts the NIS server in charge of access control for this exported file system, where users can
be added and removed from an NIS group without affecting /etc/exports.

116 Chapter 9. Network File System (NFS)

In its simplest form, the /etc/exports file only specifies the exported directory and the hosts per-
mitted to access it, as in the following example:

/exported/directory bob.example.com

In the example, bob.example.com can mount /exported/directory/. Because no options are
specified in this example, the following default NFS options take effect:

• ro — Mounts of the exported file system are read-only. Remote hosts are not able to make changes
to the data shared on the file system. To allow hosts to make changes to the file system, the
read/write (rw) option must be specified.

• wdelay — Causes the NFS server to delay writing to the disk if it suspects another write request
is imminent. This can improve performance by reducing the number of times the disk must be
accessed by separate write commands, reducing write overhead. The no_wdelay option turns off
this feature, but is only available when using the sync option.

• root_squash — Prevents root users connected remotely from having root privileges and as-
signs them the user ID for the user nfsnobody. This effectively "squashes" the power of the
remote root user to the lowest local user, preventing unauthorized alteration of files on the re-
mote server. Alternatively, the no_root_squash option turns off root squashing. To squash ev-
ery remote user, including root, use the all_squash option. To specify the user and group IDs
to use with remote users from a particular host, use the anonuid and anongid options, respec-
tively. In this case, a special user account can be created for remote NFS users to share and spec-
ify (anonuid=<uid-value>,anongid=<gid-value>),where <uid-value> is the user ID
number and <gid-value> is the group ID number.

Important

By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. To
disable this feature, specify the no_acl option when exporting the file system. For more about this
feature, refer to the chapter titled Network File System (NFS) in the Red Hat Enterprise Linux System
Administration Guide.

Each default for every exported file system must be explicitly overridden. For example, if the rw
option is not specified, then the exported file system is shared as read-only. The following is a sample
line from /etc/exports which overrides two default options:

/another/exported/directory 192.168.0.3(rw,sync)

In this example 192.168.0.3 can mount /another/exported/directory/ read/write and all
transfers to disk are committed to the disk before the write request by the client is completed.

Additionally, other options are available where no default value is specified. These include the ability
to disable sub-tree checking, allow access from insecure ports, and allow insecure file locks (necessary
for certain early NFS client implementations). Refer to the exports man page for details on these
lesser used options.

Warning

The format of the /etc/exports file is very precise, particularly in regards to use of the space char-
acter. Remember to always separate exported file systems from hosts and hosts from one another
with a space character. However, there should be no other space characters in the file except on
comment lines.

For example, the following two lines do not mean the same thing:

Chapter 9. Network File System (NFS) 117

/home bob.example.com(rw)
/home bob.example.com (rw)

The first line allows only users from bob.example.com read/write access to the /home directory. The
second line allows users from bob.example.com to mount the directory as read-only (the default),
while the rest of the world can mount it read/write.

For detailed instructions on configuring an NFS server by editing /etc/exports, refer to the chapter
titled Network File System (NFS) in the Red Hat Enterprise Linux System Administration Guide.

9.3.2. The exportfs Command
Every file system being exported to remote users via NFS, as well as the access level for those file sys-
tems, are listed in the /etc/exports file. When the nfs service starts, the /usr/sbin/exportfs
command launches and reads this file, passes control to rpc.mountd (if NFSv2 or NFSv3) for the
actual mounting process, then to rpc.nfsd where the file systems are then available to remote users.

When issued manually, the /usr/sbin/exportfs command allows the root user to selectively ex-
port or unexport directories without restarting the NFS service. When given the proper options, the
/usr/sbin/exportfs command writes the exported file systems to /var/lib/nfs/xtab. Since
rpc.mountd refers to the xtab file when deciding access privileges to a file system, changes to the
list of exported file systems take effect immediately.

The following is a list of commonly used options available for /usr/sbin/exportfs:

• -r — Causes all directories listed in /etc/exports to be exported by constructing a new export
list in /etc/lib/nfs/xtab. This option effectively refreshes the export list with any changes that
have been made to /etc/exports.

• -a — Causes all directories to be exported or unexported, depending on what other options are
passed to /usr/sbin/exportfs. If no other options are specified, /usr/sbin/exportfs ex-
ports all file systems specified in /etc/exports.

• -o file-systems — Specifies directories to be exported that are not listed in /etc/exports.
Replace file-systems with additional file systems to be exported. These file systems
must be formatted in the same way they are specified in /etc/exports. Refer to
Section 9.3.1 The /etc/exports Configuration File for more information on /etc/exports
syntax. This option is often used to test an exported file system before adding it permanently to the
list of file systems to be exported.

• -i — Ignores /etc/exports; only options given from the command line are used to define ex-
ported file systems.

• -u — Unexports all shared directories. The command /usr/sbin/exportfs -ua suspends NFS
file sharing while keeping all NFS daemons up. To re-enable NFS sharing, type exportfs -r.

• -v — Verbose operation, where the file systems being exported or unexported are displayed in
greater detail when the exportfs command is executed.

If no options are passed to the /usr/sbin/exportfs command, it displays a list of currently ex-
ported file systems.

For more information about the /usr/sbin/exportfs command, refer to the exportfs man page.

9.3.2.1. Using exportfs with NFSv4
Since NFSv4 no longer utilizes the rpc.mountd protocol as was used in NFSv2 and NFSv3, the
mounting of file systems has changed.

118 Chapter 9. Network File System (NFS)

An NFSv4 client now has the ability to see all of the exports served by the NFSv4 server as a single file
system, called the NFSv4 pseudo-file system. On Red Hat Enterprise Linux, the pseudo-file system is
identified as a single, real file system, identified at export with the fsid=0 option.

For example, the following commands could be executed on an NFSv4 server:

mkdir /exports
mkdir /exports/opt
mkdir /exports/etc
mount --bind /usr/local/opt /exports/opt
mount --bind /usr/local/etc /exports/etc
exportfs -o fsid=0,insecure,no_subtree_check gss/krb5p:/exports
exportfs -o rw,nohide,insecure,no_subtree_check gss/krb5p:/exports/opt
exportfs -o rw,nohide,insecure,no_subtree_check gss/krb5p:/exports/etc

In this example, clients are provided with multiple file systems to mount, by using the --bind option.

9.4. NFS Client Configuration Files
NFS shares are mounted on the client side using the mount command. The format of the command is
as follows:

mount -t <nfs-type> -o <options> <host>:</remote/export> </local/directory>

Replace <nfs-type> with either nfs for NFSv2 or NFSv3 servers, or nfs4 for NFSv4 servers.
Replace <options> with a comma separated list of options for the NFS file system (refer to
Section 9.4.3 Common NFS Mount Options for details). Replace <host> with the remote host,
</remote/export> with the remote directory being mounted, and </local/directory>

with the local directory where the remote file system is to be mounted.

Refer to the mount man page for more details.

If accessing an NFS share by manually issuing the mount command, the file system must be re-
mounted manually after the system is rebooted. Red Hat Enterprise Linux offers two methods for
mounting remote file systems automatically at boot time: the /etc/fstab file or the autofs ser-
vice.

9.4.1. /etc/fstab
The /etc/fstab file is referenced by the netfs service at boot time, so lines referencing NFS shares
have the same effect as manually typing the mount command during the boot process.

A sample /etc/fstab line to mount an NFS export looks like the following example:

<server>:</remote/export> </local/directory> <nfs-type> <options> 0 0

Replace <server> with the hostname, IP address, or fully qualified domain name of the server
exporting the file system.

Replace </remote/export> with the path to the exported directory.

Replace </local/directory> with the local file system on which the exported directory is
mounted. This mount point must exist before /etc/fstab is read or the mount fails.

Replace <nfs-type> with either nfs for NFSv2 or NFSv3 servers, or nfs4 for NFSv4 servers.

Chapter 9. Network File System (NFS) 119

Replace <options> with a comma separated list of options for the NFS file system (refer to
Section 9.4.3 Common NFS Mount Options for details). Refer to the fstab man page for additional
information.

9.4.2. autofs
One drawback to using /etc/fstab is that, regardless of how infrequently a user accesses the NFS
mounted file system, the system must dedicate resources to keep the mounted file system in place.
This is not a problem with one or two mounts, but when the system is maintaining mounts to a dozen
systems at one time, overall system performance can suffer. An alternative to /etc/fstab is to use
the kernel-based automount utility, which can mount and unmount NFS file systems automatically,
saving resources.

The autofs service is used to control the automount command through the /etc/auto.master
primary configuration file. While automount can be specified on the command line, it is more con-
venient to specify the mount points, hostname, exported directory, and options in a set of files rather
than typing them manually.

The autofs configuration files are arranged in a parent-child relationship. The main configuration
file (/etc/auto.master) lists mount points on the system that are linked to a particular map type,
which takes the form of other configuration files, programs, NIS maps, and other less common mount
methods. The auto.master file contains lines referring to each of these mount points, organized in
the following manner:

<mount-point> <map-type>

The <mount-point> element specifies the location of the mount on the local file system. The
<map-type> specifies how the mount point is mounted. The most common method for auto mount-
ing NFS exports is to use a file as the map type for the particular mount point. The map file is
usually named auto.<mount-point>, where <mount-point> is the mount point designated in
auto.master. A line within map files to mount an NFS export looks like the following example:

</local/directory> -<options> <server>:</remote/export>

Replace </local/directory;> with the local file system on which the exported directory is
mounted. This mount point must exist before the map file is read, else the mount fails.

Replace <options> with a comma separated list of options for the NFS file system (refer to
Section 9.4.3 Common NFS Mount Options for details). Be sure to include the hyphen character (-)
immediately before the options list.

Replace <server> with the hostname, IP address, or fully qualified domain name of the server
exporting the file system.

Replace </remote/export> with the path to the exported directory.

Replace <options> with a comma separated list of options for the NFS file system (refer to
Section 9.4.3 Common NFS Mount Options for details).

While autofs configuration files can be used for a variety of mounts to many types of devices and file
systems, they are particularly useful in creating NFS mounts. For example, some organizations store
a user’s /home/ directory on a central server via an NFS share, then configure the auto.master
file on each of the workstations to point to an auto.home file containing the specifics for how to
mount the /home/ directory via NFS. This allows the user to access personal data and configuration
files in their /home/ directory by logging in anywhere on the network. The auto.master file in this
situation would look similar to this:

/home /etc/auto.home

120 Chapter 9. Network File System (NFS)

This sets up the /home/ mount point on the local system to be configured by the /etc/auto.home
file, which looks similar to the example below:

* -fstype=nfs4,soft,intr,rsize=32768,wsize=32768,nosuid server.example.com:/home

This line states that any directory a user tries to access under the local /home/ directory (due to
the asterisk character) should result in an NFS mount on the server.example.com system on the
mount point /home/. The mount options specify that each /home/ directory NFS mounts should use
a particular collection of settings. For more information on mount options, including the ones used in
this example, refer to Section 9.4.3 Common NFS Mount Options.

For more information about the autofs configuration files, refer to the auto.master man page.

9.4.3. Common NFS Mount Options
Beyond mounting a file system via NFS on a remote host, other options can be specified at the time
of the mount to make it easier to use. These options can be used with manual mount commands,
/etc/fstab settings, and autofs.

The following are options commonly used for NFS mounts:

• fsid=num — Forces the file handle and file attributes settings on the wire to be num, instead of a
number derived from the major and minor number of the block device on the mounted file system.
The value 0 has special meaning when used with NFSv4. NFSv4 has a concept of a root of the
overall exported file system. The export point exported with fsid=0 is used as this root.

• hard or soft — Specifies whether the program using a file via an NFS connection should stop
and wait (hard) for the server to come back online, if the host serving the exported file system is
unavailable, or if it should report an error (soft).

If hard is specified, the user cannot terminate the process waiting for the NFS communication to
resume unless the intr option is also specified.

If soft is specified, the user can set an additional timeo=<value> option, where <value>

specifies the number of seconds to pass before the error is reported.

• intr — Allows NFS requests to be interrupted if the server goes down or cannot be reached.

• nfsvers=2 or nfsvers=3 — Specifies which version of the NFS protocol to use. This is useful
for hosts that run multiple NFS servers. If no version is specified, NFS uses the highest supported
version by the kernel and mount command. This option is not supported with NFSv4 and should
not be used.

• noacl — Turns off all ACL processing. This may be needed when interfacing with older versions
of Red Hat Enterprise Linux, Red Hat Linux, or Solaris, since the most recent ACL technology is
not compatible with older systems.

• nolock — Disables file locking. This setting is occasionally required when connecting to older
NFS servers.

• noexec — Prevents execution of binaries on mounted file systems. This is useful if the system is
mounting a non-Linux file system via NFS containing incompatible binaries.

• nosuid — Disables set-user-identifier or set-group-identifier bits. This prevents remote users from
gaining higher privileges by running a setuid program.

• port=num — Specifies the numeric value of the NFS server port. If num is 0 (the default), then
mount queries the remote host’s portmapper for the port number to use. If the remote host’s NFS
daemon is not registered with its portmapper, the standard NFS port number of TCP 2049 is used
instead.

Chapter 9. Network File System (NFS) 121

• rsize=num and wsize=num — These settings speed up NFS communication for reads (rsize)
and writes (wsize) by setting a larger data block size, in bytes, to be transferred at one time. Be
careful when changing these values; some older Linux kernels and network cards do not work well
with larger block sizes. For NFSv2 or NFSv3, the default values for both parameters is set to 8192.
For NFSv4, the default values for both parameters is set to 32768.

• sec=mode — Specifies the type of security to utilize when authenticating an NFS connection.

sec=sys is the default setting, which uses local UNIX UIDs and GIDs by means of AUTH_SYS
to authenticate NFS operations.

sec=krb5 uses Kerberos V5 instead of local UNIX UIDs and GIDs to authenticate users.

sec=krb5i uses Kerberos V5 for user authentication and performs integrity checking of NFS
operations using secure checksums to prevent data tampering.

sec=krb5p uses Kerberos V5 for user authentication, integrity checking, and encrypts NFS traffic
to prevent traffic sniffing. This is the most secure setting, but it also has the most performance
overhead involved.

• tcp — Specifies for the NFS mount to use the TCP protocol.

• udp — Specifies for the NFS mount to use the UDP protocol.

Many more options are listed on the mount and nfs man pages.

9.5. Securing NFS
NFS is well suited for sharing entire file systems with a large number of known hosts in a transparent
manner. However, with ease of use comes a variety of potential security problems.

The following points should be considered when exporting NFS file systems on a server or mounting
them on a client. Doing so minimizes NFS security risks and better protects data on the server.

For a concise listing of steps administrators can take to secure NFS servers, refer the the chapter titled
Server Security in the Red Hat Enterprise Linux Security Guide.

9.5.1. Host Access
Depending on which version of NFS you plan to implement, depends on your existing network en-
vironment, and your security concerns. The following sections explain the differences between im-
plementing security measures with NFSv2, NFSv3, and NFSv4. If at all possible, use of NFSv4 is
recommended over other versions of NFS.

9.5.1.1. Using NFSv2 or NFSv3
NFS controls who can mount an exported file system based on the host making the mount request, not
the user that actually uses the file system. Hosts must be given explicit rights to mount the exported
file system. Access control is not possible for users, other than through file and directory permissions.
In other words, once a file system is exported via NFS, any user on any remote host connected to the
NFS server can access the shared data. To limit the potential risks, administrators often allow read-
only access or squash user permissions to a common user and group ID. Unfortunately, these solutions
prevent the NFS share from being used in the way it was originally intended.

Additionally, if an attacker gains control of the DNS server used by the system exporting the NFS
file system, the system associated with a particular hostname or fully qualified domain name can be
pointed to an unauthorized machine. At this point, the unauthorized machine is the system permitted to
mount the NFS share, since no username or password information is exchanged to provide additional
security for the NFS mount.

122 Chapter 9. Network File System (NFS)

Wildcards should be used sparingly when exporting directories via NFS as it is possible for the scope
of the wildcard to encompass more systems than intended.

It is also possible to restrict access to the portmap service via TCP wrappers. Access to ports used by
portmap, rpc.mountd, and rpc.nfsd can also be limited by creating firewall rules with iptables.

For more information on securing NFS and portmap, refer to the chapter titled Server Security in
the Red Hat Enterprise Linux Security Guide. Additional information about firewalls can be found in
Chapter 18 iptables.

9.5.1.2. Using NFSv4
The release of NFSv4 brought a revolution to authentication and security to NFS exports. NFSv4
mandates the implementation of the RPCSEC_GSS kernel module, the Kerberos version 5 GSS-API
mechanism, SPKM-3, and LIPKEY. With NFSv4, the mandatory security mechanisms are oriented
towards authenticating individual users, and not client machines as used in NFSv2 and NFSv3.

Note

It is assumed that a Kerberos ticket-granting server (KDC) is installed and configured correctly, prior
to configuring an NFSv4 server.

NFSv4 includes ACL support based on the Microsoft Windows NT model, not the POSIX model,
because of its features and because it is widely deployed. NFSv2 and NFSv3 do not have support for
native ACL attributes.

Another important security feature of NFSv4 is its removal of the rpc.mountd daemon. The
rpc.mountd daemon presented possible security holes because of the way it dealt with filehandlers.

For more information on the RPCSEC_GSS framework, including how rpc.svcgssd and rpc.gssd
interoperate, refer to http://www.citi.umich.edu/projects/nfsv4/gssd/.

9.5.2. File Permissions
Once the NFS file system is mounted read/write by a remote host, the only protection each shared file
has is its permissions. If two users that share the same user ID value mount the same NFS file system,
they can modify each others files. Additionally, anyone logged in as root on the client system can use
the su - command to become a user who could access particular files via the NFS share. For more on
NFS and user ID conflicts, refer to the chapter titled Managing User Accounts and Resource Access
in the Red Hat Enterprise Linux Introduction to System Administration.

By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. It is
not recommended that this feature be disabled. For more about this feature, refer to the chapter titled
Network File System (NFS) in the Red Hat Enterprise Linux System Administration Guide.

The default behavior when exporting a file system via NFS is to use root squashing. This sets the user
ID of anyone accessing the NFS share as the root user on their local machine to a value of the server’s
nfsnobody account. Never turn off root squashing.

If exporting an NFS share as read-only, consider using the all_squash option, which makes every
user accessing the exported file system take the user ID of the nfsnobody user.

Chapter 9. Network File System (NFS) 123

9.6. Additional Resources
Administering an NFS server can be a challenge. Many options, including quite a few not mentioned
in this chapter, are available for exporting or mounting NFS shares. Consult the following sources for
more information.

9.6.1. Installed Documentation

• /usr/share/doc/nfs-utils-<version-number>/ — Replace <version-number>

with the version number of the NFS package installed. This directory contains a wealth of
information about the NFS implementation for Linux, including a look at various NFS
configurations and their impact on file transfer performance.

• man mount — Contains a comprehensive look at mount options for both NFS server and client
configurations.

• man fstab — Gives details for the format of the /etc/fstab file used to mount file systems at
boot-time.

• man nfs — Provides details on NFS-specific file system export and mount options.

• man exports — Shows common options used in the /etc/exports file when exporting NFS
file systems.

9.6.2. Useful Websites

• http://nfs.sourceforge.net/ — The home of the Linux NFS project and a great place for project status
updates.

• http://www.citi.umich.edu/projects/nfsv4/linux/ — An NFSv4 for Linux 2.6 kernel resource.

• http://www.nfsv4.org — The home of NFS version 4 and all related standards.

• http://www.vanemery.com/Linux/NFSv4/NFSv4-no-rpcsec.html — Describes the details of NFSv4
with Fedora Core 2, which includes the 2.6 kernel.

• http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf — An excellent whitepaper on the fea-
tures and enhancements of the NFS Version 4 protocol.

9.6.3. Related Books

• Managing NFS and NIS by Hal Stern, Mike Eisler, and Ricardo Labiaga; O’Reilly & Associates —
Makes an excellent reference guide for the many different NFS export and mount options available.

• NFS Illustrated by Brent Callaghan; Addison-Wesley Publishing Company — Provides compar-
isons of NFS to other network file systems and shows, in detail, how NFS communication occurs.

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — The Network File System
(NFS) chapter explains concisely how to set up an NFS clients and servers.

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — The Server Security chapter explains
ways to secure NFS and other services.

124 Chapter 9. Network File System (NFS)

Chapter 10.
Apache HTTP Server

The Apache HTTP Server is a robust, commercial-grade open source Web server developed by
the Apache Software Foundation (http://www.apache.org/). Red Hat Enterprise Linux includes
the Apache HTTP Server 2.0 as well as a number of server modules designed to enhance its
functionality.

The default configuration file installed with the Apache HTTP Server works without alteration for
most situations. This chapter outlines many of the directives found within its configuration file
(/etc/httpd/conf/httpd.conf) to aid those who require a custom configuration or need to
convert a configuration file from the older Apache HTTP Server 1.3 format.

Warning

If using the graphical HTTP Configuration Tool (system-config-httpd), do not hand edit the
Apache HTTP Server’s configuration file as the HTTP Configuration Tool regenerates this file when-
ever it is used.

For more information about the HTTP Configuration Tool, please refer to the chapter titled Apache
HTTP Server Configuration in the Red Hat Enterprise Linux System Administration Guide.

10.1. Apache HTTP Server 2.0
There are important differences between the Apache HTTP Server 2.0 and version 1.3
(version 1.3 shipped with Red Hat Enterprise Linux 2.1 and earlier). This section reviews
some of the features of Apache HTTP Server 2.0 and outlines important changes. For
instructions on migrating a version 1.3 configuration file to the 2.0 format, refer to
Section 10.2 Migrating Apache HTTP Server 1.3 Configuration Files.

10.1.1. Features of Apache HTTP Server 2.0
Apache HTTP Server 2.0 includes the following features:

• Apache API — Modules utilize a more powerful set of Application Programming Interfaces (APIs).

Important

Modules built for Apache HTTP Server 1.3 do not work without being ported to the new API. If un-
sure whether or not a particular module has been ported, consult the developer before upgrading.

• Filtering — Modules can act as content filters. Refer to
Section 10.2.4 Modules and Apache HTTP Server 2.0 for more on how filtering works.

• IPv6 Support — The next generation IP addressing format is supported.

• Simplified Directives — A number of confusing directives have been removed while others have
been simplified. Refer to Section 10.5 Configuration Directives in httpd.conf for more informa-
tion about specific directives.

126 Chapter 10. Apache HTTP Server

• Multilingual Error Responses — When using Server Side Include (SSI) documents, customizable
error response pages can be delivered in multiple languages.

A more complete list of changes can be found online at http://httpd.apache.org/docs-2.0/.

10.1.2. Packaging Changes in Apache HTTP Server 2.0
Starting with Red Hat Enterprise Linux 3, the Apache HTTP Server packages were renamed. Also,
some related packages were renamed, deprecated, or incorporated into other packages.

Below is a list of packaging changes:

• The apache, apache-devel and apache-manual packages were renamed to httpd,
httpd-devel and httpd-manual respectively.

• The mod_dav package was incorporated into the httpd package.

• The mod_put and mod_roaming packages were removed, since their functionality is a subset of
that provided by mod_dav (which is now incorporated into the httpd package).

• The mod_auth_any and mod_bandwidth packages were removed.

• The version number for the mod_ssl package is now synchronized with the httpd package. This
means that the mod_ssl package for Apache HTTP Server 2.0 has a lower version number than
mod_ssl package for Apache HTTP Server 1.3.

10.1.3. File System Changes in Apache HTTP Server 2.0
The following changes to the file system layout occur when upgrading to Apache HTTP Server 2.0:

• The configuration directory, /etc/httpd/conf.d/, has been added. — This directory
is used to store configuration files for individually packaged modules, such as mod_ssl,
mod_perl, and php. The server is instructed to load configuration files from this location by
the directive Include conf.d/*.conf within the Apache HTTP Server configuration file,
/etc/httpd/conf/httpd.conf.

Important

It is vital that the line specifying the new configuration directory be inserted when migrating an
existing configuration.

• The ab and logresolve programs have been moved. — These utility programs have been moved
from the /usr/sbin/ directory and into the /usr/bin/ directory. This causes scripts with abso-
lute paths for these binaries to fail.

• The dbmmanage command has been replaced. — The dbmmanage command has been replaced by
htdbm. Refer to Section 10.2.4.5 The mod_auth_dbm and mod_auth_db Modules for more infor-
mation.

• The logrotate configuration file has been renamed. — The logrotate configuration file has
been renamed from /etc/logrotate.d/apache to /etc/logrotate.d/httpd.

The next section outlines how to migrate an Apache HTTP Server 1.3 configuration to the 2.0 format.

Chapter 10. Apache HTTP Server 127

10.2. Migrating Apache HTTP Server 1.3 Configuration Files
This section details migrating an Apache HTTP Server 1.3 configuration file to be utilized by Apache
HTTP Server 2.0.

If upgrading to Red Hat Enterprise Linux 4 from Red Hat Enterprise Linux 2.1, note that
the new stock configuration file for the Apache HTTP Server 2.0 package is installed as
/etc/httpd/conf/httpd.conf.rpmnew and the original version 1.3 httpd.conf is left
untouched. It is entirely up to you whether to use the new configuration file and migrate the old
settings to it, or use the existing file as a base and modify it to suit; however, some parts of the file
have changed more than others and a mixed approach is generally the best. The stock configuration
files for both version 1.3 and 2.0 are divided into three sections.

If the /etc/httpd/conf/httpd.conf file is a modified version of the newly installed default and
a saved a copy of the original configuration file is available, it may be easiest to invoke the diff
command, as in the following example (logged in as root):

diff -u httpd.conf.orig httpd.conf | less

This command highlights any modifications made. If a copy of the original file is not available, extract
it from an RPM package using the rpm2cpio and cpio commands, as in the following example:

rpm2cpio apache-<version-number>.i386.rpm | cpio -i --make

In the above command, replace <version-number> with the version number for the apache
package.

Finally, it is useful to know that the Apache HTTP Server has a testing mode to check for configuration
errors. To use access it, type the following command:

apachectl configtest

10.2.1. Global Environment Configuration
The global environment section of the configuration file contains directives which affect the overall
operation of the Apache HTTP Server, such as the number of concurrent requests it can handle and
the locations of the various files. This section requires a large number of changes and should be based
on the Apache HTTP Server 2.0 configuration file, while migrating the old settings into it.

10.2.1.1. Interface and Port Binding
The BindAddress and Port directives no longer exist; their functionality is now provided by a more
flexible Listen directive.

If Port 80 was set in the 1.3 version configuration file, change it to Listen 80 in the 2.0 configu-
ration file. If Port was set to some value other than 80, then append the port number to the contents
of the ServerName directive.

For example, the following is a sample Apache HTTP Server 1.3 directive:

Port 123
ServerName www.example.com

To migrate this setting to Apache HTTP Server 2.0, use the following structure:

Listen 123
ServerName www.example.com:123

128 Chapter 10. Apache HTTP Server

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mpm_common.html#listen

• http://httpd.apache.org/docs-2.0/mod/core.html#servername

10.2.1.2. Server-Pool Size Regulation
When the Apache HTTP Server accepts requests, it dispatches child processes or threads to handle
them. This group of child processes or threads is known as a server-pool. Under Apache HTTP Server
2.0, the responsibility for creating and maintaining these server-pools has been abstracted to a group
of modules called Multi-Processing Modules (MPMs). Unlike other modules, only one module from
the MPM group can be loaded by the Apache HTTP Server. There are three MPM modules that ship
with 2.0: prefork, worker, and perchild. Currently only the prefork and worker MPMs are
available, although the perchild MPM may be available at a later date.

The original Apache HTTP Server 1.3 behavior has been moved into the prefork MPM. The
prefork MPM accepts the same directives as Apache HTTP Server 1.3, so the following directives
may be migrated directly:

• StartServers

• MinSpareServers

• MaxSpareServers

• MaxClients

• MaxRequestsPerChild

The worker MPM implements a multi-process, multi-threaded server providing greater scalability.
When using this MPM, requests are handled by threads, conserving system resources and allowing
large numbers of requests to be served efficiently. Although some of the directives accepted by the
worker MPM are the same as those accepted by the prefork MPM, the values for those directives
should not be transfered directly from an Apache HTTP Server 1.3 installation. It is best to instead
use the default values as a guide, then experiment to determine what values work best.

Important

To use the worker MPM, create the file /etc/sysconfig/httpd and add the following directive:

HTTPD=/usr/sbin/httpd.worker

For more on the topic of MPMs, refer to the following documentation on the Apache Software Foun-
dation’s website:

• http://httpd.apache.org/docs-2.0/mpm.html

10.2.1.3. Dynamic Shared Object (DSO) Support
There are many changes required here, and it is highly recommended that anyone trying to modify an
Apache HTTP Server 1.3 configuration to suit version 2.0 (as opposed to migrating the changes into
the version 2.0 configuration) copy this section from the stock Apache HTTP Server 2.0 configuration
file.

Chapter 10. Apache HTTP Server 129

Those who do not want to copy the section from the stock Apache HTTP Server 2.0 configuration
should note the following:

• The AddModule and ClearModuleList directives no longer exist. These directives where used
to ensure that modules could be enabled in the correct order. The Apache HTTP Server 2.0 API
allows modules to specify their ordering, eliminating the need for these two directives.

• The order of the LoadModule lines are no longer relevant in most cases.

• Many modules have been added, removed, renamed, split up, or incorporated into others.

• LoadModule lines for modules packaged in their own RPMs (mod_ssl, php, mod_perl,
and the like) are no longer necessary as they can be found in their relevant files within the
/etc/httpd/conf.d/ directory.

• The various HAVE_XXX definitions are no longer defined.

Important

If modifying the original file, note that it is of paramount importance that the httpd.conf contains the
following directive:

Include conf.d/*.conf

Omission of this directive results in the failure of all modules packaged in their own RPMs (such as
mod_perl, php, and mod_ssl).

10.2.1.4. Other Global Environment Changes
The following directives have been removed from Apache HTTP Server 2.0’s configuration:

• ServerType — The Apache HTTP Server can only be run as ServerType standalone making
this directive irrelevant.

• AccessConfig and ResourceConfig — These directives have been removed as they mirror the
functionality of the Include directive. If the AccessConfig and ResourceConfig directives are
set, replace them with Include directives.

To ensure that the files are read in the order implied by the older directives, the Include directives
should be placed at the end of the httpd.conf, with the one corresponding to ResourceConfig
preceding the one corresponding to AccessConfig. If using the default values, include them ex-
plicitly as conf/srm.conf and conf/access.conf files.

10.2.2. Main Server Configuration
The main server configuration section of the configuration file sets up the main server, which responds
to any requests that are not handled by a virtual host defined within a <VirtualHost> container.
Values here also provide defaults for any <VirtualHost> containers defined.

The directives used in this section have changed little between Apache HTTP Server 1.3 and version
2.0. If the main server configuration is heavily customized, it may be easier to modify the existing
configuration file to suit Apache HTTP Server 2.0. Users with only lightly customized main server
sections should migrate their changes into the default 2.0 configuration.

130 Chapter 10. Apache HTTP Server

10.2.2.1. UserDir Mapping
The UserDir directive is used to enable URLs such as http://example.com/~bob/ to map to
a subdirectory within the home directory of the user bob, such as /home/bob/public_html/. A
side-effect of this feature allows a potential attacker to determine whether a given username is present
on the system. For this reason, the default configuration for Apache HTTP Server 2.0 disables this
directive.

To enable UserDir mapping, change the directive in httpd.conf from:

UserDir disable

to the following:

UserDir public_html

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_userdir.html#userdir

10.2.2.2. Logging
The following logging directives have been removed:

• AgentLog

• RefererLog

• RefererIgnore

However, agent and referrer logs are still available using the CustomLog and LogFormat directives.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_log_config.html#customlog

• http://httpd.apache.org/docs-2.0/mod/mod_log_config.html#logformat

10.2.2.3. Directory Indexing
The deprecated FancyIndexing directive has now been removed. The same functionality is available
through the FancyIndexing option within the IndexOptions directive.

The VersionSort option to the IndexOptions directive causes files containing version
numbers to be sorted in a more natural way. For example, httpd-2.0.6.tar appears before
httpd-2.0.36.tar in a directory index page.

The defaults for the ReadmeName and HeaderName directives have changed from README and
HEADER to README.html and HEADER.html.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_autoindex.html#indexoptions

• http://httpd.apache.org/docs-2.0/mod/mod_autoindex.html#readmename

• http://httpd.apache.org/docs-2.0/mod/mod_autoindex.html#headername

Chapter 10. Apache HTTP Server 131

10.2.2.4. Content Negotiation
The CacheNegotiatedDocs directive now takes the argument on or off. Existing instances of
CacheNegotiatedDocs should be replaced with CacheNegotiatedDocs on.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_negotiation.html#cachenegotiateddocs

10.2.2.5. Error Documents
To use a hard-coded message with the ErrorDocument directive, the message should be enclosed in
a pair of double quotation marks ["], rather than just preceded by a double quotation mark as required
in Apache HTTP Server 1.3.

For example, the following is a sample Apache HTTP Server 1.3 directive:

ErrorDocument 404 "The document was not found

To migrate an ErrorDocument setting to Apache HTTP Server 2.0, use the following structure:

ErrorDocument 404 "The document was not found"

Note the trailing double quote in the previous ErrorDocument directive example.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/core.html#errordocument

10.2.3. Virtual Host Configuration
The contents of all <VirtualHost> containers should be migrated in the same way as the main
server section as described in Section 10.2.2 Main Server Configuration.

Important

Note that SSL/TLS virtual host configuration has been moved out of the main server configuration
file and into /etc/httpd/conf.d/ssl.conf.

For more on this topic, refer to the chapter titled Apache HTTP Secure Server Configuration in the
Red Hat Enterprise Linux System Administration Guide and the documentation online at the following
URL:

• http://httpd.apache.org/docs-2.0/vhosts/

132 Chapter 10. Apache HTTP Server

10.2.4. Modules and Apache HTTP Server 2.0
In Apache HTTP Server 2.0, the module system has been changed to allow modules to be chained
together or combined in new and interesting ways. Common Gateway Interface (CGI) scripts, for ex-
ample, can generate server-parsed HTML documents which can then be processed by mod_include.
This opens up a tremendous number of possibilities with regards to how modules can be combined to
achieve a specific goal.

The way this works is that each request is served by exactly one handler module followed by zero or
more filter modules.

Under Apache HTTP Server 1.3, for example, a Perl script would be handled in its entirety by the
Perl module (mod_perl). Under Apache HTTP Server 2.0, the request is initially handled by the core
module — which serves static files — and is then filtered by mod_perl.

Exactly how to use this, and all other new features of Apache HTTP Server 2.0, is beyond the scope
of this document; however, the change has ramifications if the PATH_INFO directive is used for a
document which is handled by a module that is now implemented as a filter, as each contains trailing
path information after the true file name. The core module, which initially handles the request, does
not by default understand PATH_INFO and returns 404 Not Found errors for requests that contain
such information. As an alternative, use the AcceptPathInfo directive to coerce the core module
into accepting requests with PATH_INFO.

The following is an example of this directive:

AcceptPathInfo on

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/core.html#acceptpathinfo

• http://httpd.apache.org/docs-2.0/handler.html

• http://httpd.apache.org/docs-2.0/filter.html

10.2.4.1. The suexec Module
In Apache HTTP Server 2.0, the mod_suexec module uses the SuexecUserGroup directive, rather
than the User and Group directives, which is used for configuring virtual hosts. The User and Group
directives can still be used in general, but are deprecated for configuring virtual hosts.

For example, the following is a sample Apache HTTP Server 1.3 directive:

<VirtualHost vhost.example.com:80>

User someone
Group somegroup

</VirtualHost>

To migrate this setting to Apache HTTP Server 2.0, use the following structure:

<VirtualHost vhost.example.com:80>

SuexecUserGroup someone somegroup
</VirtualHost>

Chapter 10. Apache HTTP Server 133

10.2.4.2. The mod_ssl Module
The configuration for mod_ssl has been moved from the httpd.conf file into the
/etc/httpd/conf.d/ssl.conf file. For this file to be loaded, and for mod_ssl to work,
the statement Include conf.d/*.conf must be in the httpd.conf file as described in
Section 10.2.1.3 Dynamic Shared Object (DSO) Support.

ServerName directives in SSL virtual hosts must explicitly specify the port number.

For example, the following is a sample Apache HTTP Server 1.3 directive:

<VirtualHost _default_:443>

General setup for the virtual host
ServerName ssl.example.name
...

</VirtualHost>

To migrate this setting to Apache HTTP Server 2.0, use the following structure:

<VirtualHost _default_:443>

General setup for the virtual host
ServerName ssl.host.name:443
...

</VirtualHost>

It is also important to note that both the SSLLog and SSLLogLevel directives have been
removed. The mod_ssl module now obeys the ErrorLog and LogLevel directives. Refer to
Section 10.5.35 ErrorLog and Section 10.5.36 LogLevel for more information about these
directives.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

• http://httpd.apache.org/docs-2.0/vhosts/

10.2.4.3. The mod_proxy Module
Proxy access control statements are now placed inside a <Proxy> block rather than a <Directory
proxy:>.

The caching functionality of the old mod_proxy has been split out into the following three modules:

• mod_cache

• mod_disk_cache

• mod_mem_cache

These generally use directives similar to the older versions of the mod_proxy module, but it is advis-
able to verify each directive before migrating any cache settings.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_proxy.html

134 Chapter 10. Apache HTTP Server

10.2.4.4. The mod_include Module
The mod_include module is now implemented as a filter and is therefore enabled differently. Refer
to Section 10.2.4 Modules and Apache HTTP Server 2.0 for more about filters.

For example, the following is a sample Apache HTTP Server 1.3 directive:

AddType text/html .shtml
AddHandler server-parsed .shtml

To migrate this setting to Apache HTTP Server 2.0, use the following structure:

AddType text/html .shtml
AddOutputFilter INCLUDES .shtml

Note that the Options +Includes directive is still required for the <Directory> container or in
a .htaccess file.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_include.html

10.2.4.5. The mod_auth_dbm and mod_auth_db Modules
Apache HTTP Server 1.3 supported two authentication modules, mod_auth_db and mod_auth_dbm,
which used Berkeley Databases and DBM databases respectively. These modules have been com-
bined into a single module named mod_auth_dbm in Apache HTTP Server 2.0, which can access
several different database formats. To migrate from mod_auth_db, configuration files should be ad-
justed by replacing AuthDBUserFile and AuthDBGroupFilewith the mod_auth_dbm equivalents,
AuthDBMUserFile and AuthDBMGroupFile. Also, the directive AuthDBMType DB must be added
to indicate the type of database file in use.

The following example shows a sample mod_auth_db configuration for Apache HTTP Server 1.3:

<Location /private/>
AuthType Basic
AuthName "My Private Files"
AuthDBUserFile /var/www/authdb
require valid-user

</Location>

To migrate this setting to version 2.0 of Apache HTTP Server, use the following structure:

<Location /private/>
AuthType Basic
AuthName "My Private Files"
AuthDBMUserFile /var/www/authdb
AuthDBMType DB
require valid-user

</Location>

Note that the AuthDBMUserFile directive can also be used in .htaccess files.

The dbmmanage Perl script, used to manipulate username and password databases, has been replaced
by htdbm in Apache HTTP Server 2.0. The htdbm program offers equivalent functionality and, like
mod_auth_dbm, can operate a variety of database formats; the -T option can be used on the command
line to specify the format to use.

Table 10-1 shows how to migrate from a DBM-format database to htdbm format using dbmmanage.

Chapter 10. Apache HTTP Server 135

Action dbmmanage command
(1.3)

Equivalent htdbm
command (2.0)

Add user to database (using
given password)

dbmmanage authdb add
username password

htdbm -b -TDB authdb
username password

Add user to database (prompts
for password)

dbmmanage authdb
adduser username

htdbm -TDB authdb
username

Remove user from database dbmmanage authdb delete
username

htdbm -x -TDB authdb
username

List users in database dbmmanage authdb view htdbm -l -TDB authdb

Verify a password dbmmanage authdb check
username

htdbm -v -TDB authdb
username

Table 10-1. Migrating from dbmmanage to htdbm

The -m and -s options work with both dbmmanage and htdbm, enabling the use of the MD5 or SHA1
algorithms for hashing passwords, respectively.

When creating a new database with htdbm, the -c option must be used.

For more on this topic, refer to the following documentation on the Apache Software Foundation’s
website:

• http://httpd.apache.org/docs-2.0/mod/mod_auth_dbm.html

10.2.4.6. The mod_perl Module
The configuration for mod_perl has been moved from httpd.conf into the file
/etc/httpd/conf.d/perl.conf. For this file to be loaded, and hence for mod_perl to work,
the statement Include conf.d/*.conf must be included in httpd.conf as described in
Section 10.2.1.3 Dynamic Shared Object (DSO) Support.

Occurrences of Apache:: in httpd.confmust be replaced with ModPerl::. Additionally, the man-
ner in which handlers are registered has been changed.

This is a sample Apache HTTP Server 1.3 mod_perl configuration:

<Directory /var/www/perl>

SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Directory>

This is the equivalent mod_perl for Apache HTTP Server 2.0:

<Directory /var/www/perl>

SetHandler perl-script
PerlResponseHandler ModPerl::Registry
Options +ExecCGI

</Directory>

Most modules for mod_perl 1.x should work without modification with mod_perl 2.x. XS modules
require recompilation and may require minor Makefile modifications.

136 Chapter 10. Apache HTTP Server

10.2.4.7. The mod_python Module
Configuration for mod_python has moved from httpd.conf to the
/etc/httpd/conf.d/python.conf file. For this file to be loaded, and hence for mod_python to
work, the statement Include conf.d/*.conf must be in httpd.conf as described in
Section 10.2.1.3 Dynamic Shared Object (DSO) Support.

10.2.4.8. PHP
The configuration for PHP has been moved from httpd.conf into the file
/etc/httpd/conf.d/php.conf. For this file to be loaded, the statement
Include conf.d/*.conf must be in httpd.conf as described in
Section 10.2.1.3 Dynamic Shared Object (DSO) Support.

Note

Any PHP configuration directives used in Apache HTTP Server 1.3 are now fully compatible, when
migrating to Apache HTTP Server 2.0 on Red Hat Enterprise Linux 4.

In PHP version 4.2.0 and later the default set of predefined variables which are available in the global
scope has changed. Individual input and server variables are, by default, no longer placed directly
into the global scope. This change may cause scripts to break. Revert to the old behavior by setting
register_globals to On in the file /etc/php.ini.

For more on this topic, refer to the following URL for details concerning the global scope changes:

• http://www.php.net/release_4_1_0.php

10.2.4.9. The mod_authz_ldap Module
Red Hat Enterprise Linux ships with the mod_authz_ldap module for the Apache HTTP Server.
This module uses the short form of the distinguished name for a subject and the issuer of the client
SSL certificate to determine the distinguished name of the user within an LDAP directory. It is also
capable of authorizing users based on attributes of that user’s LDAP directory entry, determining
access to assets based on the user and group privileges of the asset, and denying access for users with
expired passwords. The mod_ssl module is required when using the mod_authz_ldap module.

Important

The mod_authz_ldap module does not authenticate a user to an LDAP directory
using an encrypted password hash. This functionality is provided by the experimental
mod_auth_ldap module. Refer to the mod_auth_ldap module documentation online at
http://httpd.apache.org/docs-2.0/mod/mod_auth_ldap.html for details on the status of this module.

The /etc/httpd/conf.d/authz_ldap.conf file configures the mod_authz_ldap module.

Refer to /usr/share/doc/mod_authz_ldap-<version>/index.html (replacing
<version> with the version number of the package) or http://authzldap.othello.ch/ for more
information on configuring the mod_authz_ldap third party module.

Chapter 10. Apache HTTP Server 137

10.3. After Installation
After installing the httpd package, review the Apache HTTP Server’s documentation available online
at http://httpd.apache.org/docs-2.0/.

The Apache HTTP Server’s documentation contains a full list and complete descriptions of all con-
figuration options. This chapter provides short descriptions of the configuration directives used by
Apache HTTP Server 2.0.

The Apache HTTP Server 2.0 includes the ability to set up secure Web servers using the strong SSL
encryption provided by the mod_ssl and openssl packages. When looking through the configu-
ration files, be aware that it includes both a non-secure and a secure Web server. The secure Web
server runs as a virtual host, which is configured in the /etc/httpd/conf.d/ssl.conf file. For
more information about virtual hosts, refer to Section 10.8 Virtual Hosts. For information on config-
uring a secure server virtual host, refer to Section 10.8.1 Setting Up Virtual Hosts. For information on
setting up an Apache HTTP Secure Server, refer to the chapter titled Apache HTTP Secure Server
Configuration in the Red Hat Enterprise Linux System Administration Guide.

Note

Red Hat, Inc. does not ship FrontPage extensions as the Microsoft™ license prohibits the inclusion
of these extensions in a third party product. More information about FrontPage extensions and the
Apache HTTP Server can be found online at http://www.rtr.com/fpsupport/.

10.4. Starting and Stopping httpd
The httpd RPM installs the /etc/init.d/httpd script, which can be accessed using the
/sbin/service command.

To start the server, as root type:

/sbin/service httpd start

To stop the server, as root type:

/sbin/service httpd stop

The restart option is a shorthand way of stopping and then starting the Apache HTTP Server.

To restart the server, as root type:

/sbin/service httpd restart

Note

If running the Apache HTTP Server as a secure server, it may be necessary to type the server
password whenever using the start or restart options.

After editing the httpd.conf file, however, it is not necessary to explicitly stop and start the server.
Instead, use the reload option.

To reload the server configuration file, as root type:

138 Chapter 10. Apache HTTP Server

/sbin/service httpd reload

Note

If running the Apache HTTP Server as a secure server, the server password is not required when
using the reload option.

By default, the httpd service does not start automatically at boot time. To configure the httpd
service to start up at boot time, use an initscript utility, such as /sbin/chkconfig, /sbin/ntsysv, or
the Services Configuration Tool program. Refer to the chapter titled Controlling Access to Services
in Red Hat Enterprise Linux System Administration Guide for more information regarding these tools.

Note

If running the Apache HTTP Server as a secure server, the secure server’s password is required after
the machine boots when using an encrypted private SSL key.

For information about setting up an Apache HTTP Secure Server, refer to the chapter titled Apache
HTTP Secure Server Configuration in the Red Hat Enterprise Linux System Administration Guide.

10.5. Configuration Directives in httpd.conf
The Apache HTTP Server configuration file is /etc/httpd/conf/httpd.conf. The httpd.conf
file is well-commented and mostly self-explanatory. The default configuration works for most situa-
tions; however, it is a good idea to become familiar some of the more important configuration options.

Warning

With the release of Apache HTTP Server 2.0, many configuration options have
changed. If migrating a version 1.3 configuration file to the 2.0 format, refer to
Section 10.2 Migrating Apache HTTP Server 1.3 Configuration Files.

10.5.1. General Configuration Tips
If configuring the Apache HTTP Server, edit /etc/httpd/conf/httpd.conf
and then either reload, restart, or stop and start the httpd process as outlined in
Section 10.4 Starting and Stopping httpd.

Before editing httpd.conf, make a copy the original file. Creating a backup makes it easier to
recover from mistakes made while editing the configuration file.

If a mistake is made and the Web server does not work correctly, first review recently edited passages
in httpd.conf to verify there are no typos.

Next look in the Web server’s error log, /var/log/httpd/error_log. The error log may not be
easy to interpret, depending on your level of expertise. However, the last entries in the error log should
provide useful information.

Chapter 10. Apache HTTP Server 139

The following subsections contain a list of short descriptions for many of the directives included
in httpd.conf. These descriptions are not exhaustive. For more information, refer to the Apache
documentation online at http://httpd.apache.org/docs-2.0/.

For more information about mod_ssl directives, refer to the documentation online at
http://httpd.apache.org/docs-2.0/mod/mod_ssl.html.

10.5.2. ServerRoot
The ServerRoot directive specifies the top-level directory containing website content. By default,
ServerRoot is set to "/etc/httpd" for both secure and non-secure servers.

10.5.3. PidFile
PidFile names the file where the server records its process ID (PID). By default the PID is listed in
/var/run/httpd.pid.

10.5.4. Timeout
Timeout defines, in seconds, the amount of time that the server waits for receipts and transmissions
during communications. Timeout is set to 300 seconds by default, which is appropriate for most
situations.

10.5.5. KeepAlive
KeepAlive sets whether the server allows more than one request per connection and can be used to
prevent any one client from consuming too much of the server’s resources.

By default Keepalive is set to off. If Keepalive is set to on and the server becomes very busy, the
server can quickly spawn the maximum number of child processes. In this situation, the server slows
down significantly. If Keepalive is enabled, it is a good idea to set the the KeepAliveTimeout low
(refer to Section 10.5.7 KeepAliveTimeout for more information about the KeepAliveTimeout
directive) and monitor the /var/log/httpd/error_log log file on the server. This log reports
when the server is running out of child processes.

10.5.6. MaxKeepAliveRequests
This directive sets the maximum number of requests allowed per persistent connection.
The Apache Project recommends a high setting, which improves the server’s performance.
MaxKeepAliveRequests is set to 100 by default, which should be appropriate for most situations.

10.5.7. KeepAliveTimeout
KeepAliveTimeout sets the number of seconds the server waits after a request has been served
before it closes the connection. Once the server receives a request, the Timeout directive applies
instead. The KeepAliveTimeout directive is set to 15 seconds by default.

140 Chapter 10. Apache HTTP Server

10.5.8. IfModule
<IfModule> and </IfModule> tags create a conditional container which are only activated if the
specified module is loaded. Directives within the IfModule container are processed under one of two
conditions. The directives are processed if the module contained within the starting <IfModule> tag
is loaded. Or, if an exclamation point [!] appears before the module name, the directives are processed
only if the module specified in the <IfModule> tag is not loaded.

For more information about Apache HTTP Server modules, refer to Section 10.7 Adding Modules.

10.5.9. MPM Specific Server-Pool Directives
As explained in Section 10.2.1.2 Server-Pool Size Regulation, the responsibility for managing char-
acteristics of the server-pool falls to a module group called MPMs under Apache HTTP Server 2.0.
The characteristics of the server-pool differ depending upon which MPM is used. For this reason, an
IfModule container is necessary to define the server-pool for the MPM in use.

By default, Apache HTTP Server 2.0 defines the server-pool for both the prefork and worker
MPMs.

The following section list directives found within the MPM-specific server-pool containers.

10.5.9.1. StartServers
The StartServers directive sets how many server processes are created upon startup. Since the
Web server dynamically kills and creates server processes based on traffic load, it is not necessary to
change this parameter. The Web server is set to start 8 server processes at startup for the prefork
MPM and 2 for the worker MPM.

10.5.9.2. MaxRequestsPerChild
MaxRequestsPerChild sets the total number of requests each child server process serves before
the child dies. The main reason for setting MaxRequestsPerChild is to avoid long-lived process
induced memory leaks. The default MaxRequestsPerChild for the prefork MPM is 4000 and for
the worker MPM is 0.

10.5.9.3. MaxClients
MaxClients sets a limit on the total number of server processes, or simultaneously connected clients,
that can run at one time. The main purpose of this directive is to keep a runaway Apache HTTP Server
from crashing the operating system. For busy servers this value should be set to a high value. The
server’s default is set to 150 regardless of the MPM in use. However, it is not recommended that the
value for MaxClients exceeds 256 when using the prefork MPM.

10.5.9.4. MinSpareServers and MaxSpareServers

These values are only used with the prefork MPM. They adjust how the Apache HTTP Server
dynamically adapts to the perceived load by maintaining an appropriate number of spare server pro-
cesses based on the number of incoming requests. The server checks the number of servers waiting
for a request and kills some if there are more than MaxSpareServers or creates some if the number
of servers is less than MinSpareServers.

The default MinSpareServers value is 5; the default MaxSpareServers value is 20. These default
settings should be appropriate for most situations. Be careful not to increase the MinSpareServers
to a large number as doing so creates a heavy processing load on the server even when traffic is light.

Chapter 10. Apache HTTP Server 141

10.5.9.5. MinSpareThreads and MaxSpareThreads

These values are only used with the worker MPM. They adjust how the Apache HTTP Server dy-
namically adapts to the perceived load by maintaining an appropriate number of spare server threads
based on the number of incoming requests. The server checks the number of server threads waiting
for a request and kills some if there are more than MaxSpareThreads or creates some if the number
of servers is less than MinSpareThreads.

The default MinSpareThreads value is 25; the default MaxSpareThreads value is 75. These de-
fault settings should be appropriate for most situations. The value for MaxSpareThreads must be
greater than or equal to the sum of MinSpareThreads and ThreadsPerChild, else the Apache
HTTP Server automatically corrects it.

10.5.9.6. ThreadsPerChild
This value is only used with the workerMPM. It sets the number of threads within each child process.
The default value for this directive is 25.

10.5.10. Listen
The Listen command identifies the ports on which the Web server accepts incoming requests. By
default, the Apache HTTP Server is set to listen to port 80 for non-secure Web communications and
(in the /etc/httpd/conf.d/ssl.conffile which defines any secure servers) to port 443 for secure
Web communications.

If the Apache HTTP Server is configured to listen to a port under 1024, only the root user can start it.
For port 1024 and above, httpd can be started as a regular user.

The Listen directive can also be used to specify particular IP addresses over which the server accepts
connections.

10.5.11. Include
Include allows other configuration files to be included at runtime.

The path to these configuration files can be absolute or relative to the ServerRoot.

Important

For the server to use individually packaged modules, such as mod_ssl, mod_perl, and php, the
following directive must be included in Section 1: Global Environment of httpd.conf:

Include conf.d/*.conf

10.5.12. LoadModule
LoadModule is used to load Dynamic Shared Object (DSO) modules. More information on the
Apache HTTP Server’s DSO support, including instructions for using the LoadModule directive, can
be found in Section 10.7 Adding Modules. Note, the load order of the modules is no longer important
with Apache HTTP Server 2.0. Refer to Section 10.2.1.3 Dynamic Shared Object (DSO) Support for
more information about Apache HTTP Server 2.0 DSO support.

142 Chapter 10. Apache HTTP Server

10.5.13. ExtendedStatus
The ExtendedStatus directive controls whether Apache generates basic (off) or detailed server
status information (on), when the server-status handler is called. The server-status han-
dler is called using Location tags. More information on calling server-status is included in
Section 10.5.60 Location.

10.5.14. IfDefine
The IfDefine tags surround configuration directives that are applied if the "test" stated in the
IfDefine tag is true. The directives are ignored if the test is false.

The test in the IfDefine tags is a parameter name (for example, HAVE_PERL). If the parameter is
defined, meaning that it is provided as an argument to the server’s start-up command, then the test is
true. In this case, when the Web server is started, the test is true and the directives contained in the
IfDefine tags are applied.

10.5.15. SuexecUserGroup
The SuexecUserGroup directive, which originates from the mod_suexec module, allows the speci-
fication of user and group execution privileges for CGI programs. Non-CGI requests are still processed
with the user and group specified in the User and Group directives.

Note

The SuexecUserGroup directive replaces the Apache HTTP Server 1.3 configuration of using the
User and Group directives inside the configuration of VirtualHosts sections.

10.5.16. User
The User directive sets the username of the server process and determines what files the server is
allowed to access. Any files inaccessible to this user are also inaccessible to clients connecting to the
Apache HTTP Server.

By default User is set to apache.

This directive has been deprecated for the configuration of virtual hosts.

Note

For security reasons, the Apache HTTP Server does not run as the root user.

10.5.17. Group
Specifies the group name of the Apache HTTP Server processes.

This directive has been deprecated for the configuration of virtual hosts.

By default, Group is set to apache.

Chapter 10. Apache HTTP Server 143

10.5.18. ServerAdmin
Sets the ServerAdmin directive to the email address of the Web server administrator. This email
address shows up in error messages on server-generated Web pages, so users can report a problem by
sending email to the server administrator.

By default, ServerAdmin is set to root@localhost.

A common way to set up ServerAdmin is to set it to webmaster@example.com. Once set,
alias webmaster to the person responsible for the Web server in /etc/aliases and run
/usr/bin/newaliases.

10.5.19. ServerName
ServerName specifies a hostname and port number (matching the Listen directive) for the server.
The ServerName does not need to match the machine’s actual hostname. For example, the Web server
may be www.example.com, but the server’s hostname is actually foo.example.com. The value
specified in ServerName must be a valid Domain Name Service (DNS) name that can be resolved by
the system — do not make something up.

The following is a sample ServerName directive:

ServerName www.example.com:80

When specifying a ServerName, be sure the IP address and server name pair are included in the
/etc/hosts file.

10.5.20. UseCanonicalName
When set to on, this directive configures the Apache HTTP Server to reference itself using the value
specified in the ServerName and Port directives. When UseCanonicalName is set to off, the
server instead uses the value used by the requesting client when referring to itself.

UseCanonicalName is set to off by default.

10.5.21. DocumentRoot
DocumentRoot is the directory which contains most of the HTML files which are served in re-
sponse to requests. The default DocumentRoot, for both the non-secure and secure Web servers,
is the /var/www/html directory. For example, the server might receive a request for the following
document:

http://example.com/foo.html

The server looks for the following file in the default directory:

/var/www/html/foo.html

To change the DocumentRoot so that it is not shared by the secure and the non-secure Web servers,
refer to Section 10.8 Virtual Hosts.

144 Chapter 10. Apache HTTP Server

10.5.22. Directory
<Directory /path/to/directory> and </Directory> tags create a container used to en-
close a group of configuration directives which apply only to a specific directory and its subdirectories.
Any directive which is applicable to a directory may be used within Directory tags.

By default, very restrictive parameters are applied to the root directory (/), using the Options (refer
to Section 10.5.23 Options) and AllowOverride (refer to Section 10.5.24 AllowOverride) di-
rectives. Under this configuration, any directory on the system which needs more permissive settings
has to be explicitly given those settings.

In the default configuration, another Directory container is configured for the DocumentRoot
which assigns less rigid parameters to the directory tree so that the Apache HTTP Server can access
the files residing there.

The Directory container can be also be used to configure additional cgi-bin directories for
server-side applications outside of the directory specified in the ScriptAlias directive (refer to
Section 10.5.41 ScriptAlias for more information).

To accomplish this, the Directory container must set the ExecCGI option for that directory.

For example, if CGI scripts are located in /home/my_cgi_directory, add the following
Directory container to the httpd.conf file:

<Directory /home/my_cgi_directory>

Options +ExecCGI
</Directory>

Next, the AddHandler directive must be uncommented to identify files with the .cgi extension as
CGI scripts. Refer to Section 10.5.56 AddHandler for instructions on setting AddHandler.

For this to work, permissions for CGI scripts, and the entire path to the scripts, must be set to 0755.

10.5.23. Options
The Options directive controls which server features are available in a particular directory. For ex-
ample, under the restrictive parameters specified for the root directory, Options is only set to the
FollowSymLinks directive. No features are enabled, except that the server is allowed to follow sym-
bolic links in the root directory.

By default, in the DocumentRoot directory, Options is set to include Indexes and
FollowSymLinks. Indexes permits the server to generate a directory listing for a directory if no
DirectoryIndex (for example, index.html) is specified. FollowSymLinks allows the server to
follow symbolic links in that directory.

Note

Options statements from the main server configuration section need to be replicated to each
VirtualHost container individually. Refer to Section 10.5.65 VirtualHost for more information.

10.5.24. AllowOverride
The AllowOverride directive sets whether any Options can be overridden by the declarations in
an .htaccess file. By default, both the root directory and the DocumentRoot are set to allow no
.htaccess overrides.

Chapter 10. Apache HTTP Server 145

10.5.25. Order
The Order directive controls the order in which allow and deny directives are evaluated. The server
is configured to evaluate the Allow directives before the Deny directives for the DocumentRoot
directory.

10.5.26. Allow
Allow specifies which client can access a given directory. The client can be all, a domain name, an
IP address, a partial IP address, a network/netmask pair, and so on. The DocumentRoot directory is
configured to Allow requests from all, meaning everyone has access.

10.5.27. Deny
Deny works similar to Allow, except it specifies who is denied access. The DocumentRoot is not
configured to Deny requests from anyone by default.

10.5.28. UserDir
UserDir is the subdirectory within each user’s home directory where they should place personal
HTML files which are served by the Web server. This directive is set to disable by default.

The name for the subdirectory is set to public_html in the default configuration. For example, the
server might receive the following request:

http://example.com/~username/foo.html

The server would look for the file:

/home/username/public_html/foo.html

In the above example, /home/username/ is the user’s home directory (note that the default path to
users’ home directories may vary).

Make sure that the permissions on the users’ home directories are set correctly. Users’ home direc-
tories must be set to 0711. The read (r) and execute (x) bits must be set on the users’ public_html
directories (0755 also works). Files that are served in a users’ public_html directories must be set
to at least 0644.

10.5.29. DirectoryIndex
The DirectoryIndex is the default page served by the server when a user requests an index of a
directory by specifying a forward slash (/) at the end of the directory name.

When a user requests the page http://example/this_directory /, they get either the
DirectoryIndex page, if it exists, or a server-generated directory list. The default for
DirectoryIndex is index.html and the index.html.var type map. The server tries to find
either of these files and returns the first one it finds. If it does not find one of these files and Options
Indexes is set for that directory, the server generates and returns a listing, in HTML format, of the
subdirectories and files within the directory, unless the directory listing feature is turned off.

146 Chapter 10. Apache HTTP Server

10.5.30. AccessFileName
AccessFileName names the file which the server should use for access control information in each
directory. The default is .htaccess.

Immediately after the AccessFileName directive, a set of Files tags apply access control to any
file beginning with a .ht. These directives deny Web access to any .htaccess files (or other files
which begin with .ht) for security reasons.

10.5.31. CacheNegotiatedDocs
By default, the Web server asks proxy servers not to cache any documents which were negotiated on
the basis of content (that is, they may change over time or because of the input from the requester). If
CacheNegotiatedDocs is set to on, this function is disabled and proxy servers are allowed to cache
such documents.

10.5.32. TypesConfig
TypesConfig names the file which sets the default list of MIME type mappings (file name exten-
sions to content types). The default TypesConfig file is /etc/mime.types. Instead of editing
/etc/mime.types, the recommended way to add MIME type mappings is to use the AddType
directive.

For more information about AddType, refer to Section 10.5.55 AddType.

10.5.33. DefaultType
DefaultType sets a default content type for the Web server to use for documents whose MIME types
cannot be determined. The default is text/plain.

10.5.34. HostnameLookups
HostnameLookups can be set to on, off, or double. If HostnameLookups is set to on, the
server automatically resolves the IP address for each connection. Resolving the IP address means
that the server makes one or more connections to a DNS server, adding processing overhead. If
HostnameLookups is set to double, the server performs a double-reverse DNS look up adding
even more processing overhead.

To conserve resources on the server, HostnameLookups is set to off by default.

If hostnames are required in server log files, consider running one of the many log analyzer tools that
perform the DNS lookups more efficiently and in bulk when rotating the Web server log files.

10.5.35. ErrorLog
ErrorLog specifies the file where server errors are logged. By default, this directive is set to
/var/log/httpd/error_log.

Chapter 10. Apache HTTP Server 147

10.5.36. LogLevel
LogLevel sets how verbose the error messages in the error logs are. LogLevel can be set (from
least verbose to most verbose) to emerg, alert, crit, error, warn, notice, info, or debug. The
default LogLevel is warn.

10.5.37. LogFormat
The LogFormat directive configures the format of the various Web server log files. The
actual LogFormat used depends on the settings given in the CustomLog directive (refer to
Section 10.5.38 CustomLog).

The following are the format options if the CustomLog directive is set to combined:

%h (remote host’s IP address or hostname)

Lists the remote IP address of the requesting client. If HostnameLookups is set to on, the client
hostname is recorded unless it is not available from DNS.

%l (rfc931)

Not used. A hyphen [-] appears in the log file for this field.

%u (authenticated user)

Lists the username of the user recorded if authentication was required. Usually, this is not used,
so a hyphen [-] appears in the log file for this field.

%t (date)

Lists the date and time of the request.

%r (request string)

Lists the request string exactly as it came from the browser or client.

%s (status)

Lists the HTTP status code which was returned to the client host.

%b (bytes)

Lists the size of the document.

%\"%{Referer}i\" (referrer)

Lists the URL of the webpage which referred the client host to Web server.

%\"%{User-Agent}i\" (user-agent)

Lists the type of Web browser making the request.

10.5.38. CustomLog
CustomLog identifies the log file and the log file format. By default, the log is recorded to the
/var/log/httpd/access_log file.

The default CustomLog format is the combined log file format, as illustrated here:

remotehost rfc931 user date "request" status bytes referrer user-agent

148 Chapter 10. Apache HTTP Server

10.5.39. ServerSignature
The ServerSignature directive adds a line containing the Apache HTTP Server server version and
the ServerName to any server-generated documents, such as error messages sent back to clients.
ServerSignature is set to on by default.

It can also be set to off or to EMail. EMail, adds a mailto:ServerAdmin HTML tag to the
signature line of auto-generated responses.

10.5.40. Alias
The Alias setting allows directories outside the DocumentRoot directory to be accessible. Any
URL ending in the alias automatically resolves to the alias’ path. By default, one alias for an icons/
directory is already set up. An icons/ directory can be accessed by the Web server, but the directory
is not in the DocumentRoot.

10.5.41. ScriptAlias
The ScriptAlias directive defines where CGI scripts are located. Generally, it is not good practice to
leave CGI scripts within the DocumentRoot, where they can potentially be viewed as text documents.
For this reason, a special directory outside of the DocumentRoot directory containing server-side
executables and scripts is designated by the ScriptAlias directive. This directory is known as a
cgi-bin and is set to /var/www/cgi-bin/ by default.

It is possible to establish directories for storing executables outside of the cgi-bin/ directory. For
instructions on doing so, refer to Section 10.5.56 AddHandler and Section 10.5.22 Directory.

10.5.42. Redirect
When a webpage is moved, Redirect can be used to map the file location to a new URL. The format
is as follows:

Redirect /<old-path>/<file-name> http://<current-domain>/<current-path>/<file-name>

In this example, replace <old-path> with the old path information for <file-name> and
<current-domain> and <current-path> with the current domain and path information
for <file-name>.

In this example, any requests for <file-name> at the old location is automatically redirected to
the new location.

For more advanced redirection techniques, use the mod_rewrite module included
with the Apache HTTP Server. For more information about configuring the
mod_rewrite module, refer to the Apache Software Foundation documentation online at
http://httpd.apache.org/docs-2.0/mod/mod_rewrite.html.

10.5.43. IndexOptions
IndexOptions controls the appearance of server generated directing listings, by adding icons, file
descriptions, and so on. If Options Indexes is set (refer to Section 10.5.23 Options), the Web
server generates a directory listing when the Web server receives an HTTP request for a directory
without an index.

First, the Web server looks in the requested directory for a file matching the names listed in the
DirectoryIndex directive (usually, index.html). If an index.html file is not found, Apache

Chapter 10. Apache HTTP Server 149

HTTP Server creates an HTML directory listing of the requested directory. The appearance of this
directory listing is controlled, in part, by the IndexOptions directive.

The default configuration turns on FancyIndexing. This means that a user can re-sort a directory
listing by clicking on column headers. Another click on the same header switches from ascending
to descending order. FancyIndexing also shows different icons for different files, based upon file
extensions.

The AddDescription option, when used in conjunction with FancyIndexing, presents a short
description for the file in server generated directory listings.

IndexOptions has a number of other parameters which can be set to control the appearance of server
generated directories. The IconHeight and IconWidth parameters require the server to include
HTML HEIGHT and WIDTH tags for the icons in server generated webpages. The IconsAreLinks
parameter combines the graphical icon with the HTML link anchor, which contains the URL link
target.

10.5.44. AddIconByEncoding
This directive names icons which are displayed by files with MIME encoding in server generated
directory listings. For example, by default, the Web server shows the compressed.gif icon next to
MIME encoded x-compress and x-gzip files in server generated directory listings.

10.5.45. AddIconByType
This directive names icons which are displayed next to files with MIME types in server generated
directory listings. For example, the server shows the icon text.gif next to files with a mime-type of
text, in server generated directory listings.

10.5.46. AddIcon
AddIcon specifies which icon to show in server generated directory listings for files with certain
extensions. For example, the Web server is set to show the icon binary.gif for files with .bin or
.exe extensions.

10.5.47. DefaultIcon
DefaultIcon specifies the icon displayed in server generated directory listings for files which have
no other icon specified. The unknown.gif image file is the default.

10.5.48. AddDescription
When using FancyIndexing as an IndexOptions parameter, the AddDescription directive can
be used to display user-specified descriptions for certain files or file types in a server generated direc-
tory listing. The AddDescription directive supports listing specific files, wildcard expressions, or
file extensions.

150 Chapter 10. Apache HTTP Server

10.5.49. ReadmeName
ReadmeName names the file which, if it exists in the directory, is appended to the end of server gen-
erated directory listings. The Web server first tries to include the file as an HTML document and then
tries to include it as plain text. By default, ReadmeName is set to README.html.

10.5.50. HeaderName
HeaderName names the file which, if it exists in the directory, is prepended to the start of server
generated directory listings. Like ReadmeName, the server tries to include it as an HTML document
if possible or in plain text if not.

10.5.51. IndexIgnore
IndexIgnore lists file extensions, partial file names, wildcard expressions, or full file names. The
Web server does not include any files which match any of those parameters in server generated direc-
tory listings.

10.5.52. AddEncoding
AddEncoding names file name extensions which should specify a particular encoding type.
AddEncoding can also be used to instruct some browsers to uncompress certain files as they are
downloaded.

10.5.53. AddLanguage
AddLanguage associates file name extensions with specific languages. This directive is useful for
Apache HTTP Servers which serve content in multiple languages based on the client Web browser’s
language settings.

10.5.54. LanguagePriority
LanguagePriority sets precedence for different languages in case the client Web browser has no
language preference set.

10.5.55. AddType
Use the AddType directive to define or override a default MIME type and file extension pairs. The
following example directive tells the Apache HTTP Server to recognize the .tgz file extension:

AddType application/x-tar .tgz

10.5.56. AddHandler
AddHandler maps file extensions to specific handlers. For example, the cgi-script handler can be
matched with the extension .cgi to automatically treat a file ending with .cgi as a CGI script. The
following is a sample AddHandler directive for the .cgi extension.

AddHandler cgi-script .cgi

Chapter 10. Apache HTTP Server 151

This directive enables CGIs outside of the cgi-bin to function in any directory on the server which
has the ExecCGI option within the directories container. Refer to Section 10.5.22 Directory for
more information about setting the ExecCGI option for a directory.

In addition to CGI scripts, the AddHandler directive is used to process server-parsed HTML and
image-map files.

10.5.57. Action
Action specifies a MIME content type and CGI script pair, so that when a file of that media type is
requested, a particular CGI script is executed.

10.5.58. ErrorDocument
The ErrorDocument directive associates an HTTP response code with a message or a URL to be sent
back to the client. By default, the Web server outputs a simple and usually cryptic error message when
an error occurs. The ErrorDocument directive forces the Web server to instead output a customized
message or page.

Important

To be valid, the message must be enclosed in a pair of double quotes ["].

10.5.59. BrowserMatch
The BrowserMatch directive allows the server to define environment variables and take appropriate
actions based on the User-Agent HTTP header field — which identifies the client’s Web browser type.
By default, the Web server uses BrowserMatch to deny connections to specific browsers with known
problems and also to disable keepalives and HTTP header flushes for browsers that are known to have
problems with those actions.

10.5.60. Location
The <Location> and </Location> tags create a container in which access control based on URL
can be specified.

For instance, to allow people connecting from within the server’s domain to see status reports, use the
following directives:

<Location /server-status>

SetHandler server-status
Order deny,allow
Deny from all
Allow from <.example.com>

</Location>

Replace <.example.com> with the second-level domain name for the Web server.

To provide server configuration reports (including installed modules and configuration directives) to
requests from inside the domain, use the following directives:

152 Chapter 10. Apache HTTP Server

<Location /server-info>

SetHandler server-info
Order deny,allow
Deny from all
Allow from <.example.com>

</Location>

Again, replace <.example.com> with the second-level domain name for the Web server.

10.5.61. ProxyRequests
To configure the Apache HTTP Server to function as a proxy server, remove the hash mark (#) from
the beginning of the <IfModule mod_proxy.c> line, the ProxyRequests, and each line in the
<Proxy> stanza. Set the ProxyRequests directive to On, and set which domains are allowed access
to the server in the Allow from directive of the <Proxy> stanza.

10.5.62. Proxy
<Proxy *> and </Proxy> tags create a container which encloses a group of configuration
directives meant to apply only to the proxy server. Many directives which are allowed within a
<Directory> container may also be used within <Proxy> container.

10.5.63. Cache Directives
A number of commented cache directives are supplied by the default Apache HTTP Server configura-
tion file. In most cases, uncommenting these lines by removing the hash mark (#) from the beginning
of the line is sufficient. The following, however, is a list of some of the more important cache-related
directives.

• CacheEnable— Specifies whether the cache is a disk, memory, or file descriptor cache. By default
CacheEnable configures a disk cache for URLs at or below /.

• CacheRoot— Specifies the name of the directory containing cached files. The default CacheRoot
is the /var/httpd/proxy/ directory.

• CacheSize — Specifies how much space the cache can use in kilobytes. The default CacheSize
is 5 KB.

The following is a list of some of the other common cache-related directives.

• CacheMaxExpire — Specifies how long HTML documents are retained (without a reload from
the originating Web server) in the cache. The default is 24 hours (86400 seconds).

• CacheLastModifiedFactor — Specifies the creation of an expiry (expiration) date for a
document which did not come from its originating server with its own expiry set. The default
CacheLastModifiedFactor is set to 0.1, meaning that the expiry date for such documents
equals one-tenth of the amount of time since the document was last modified.

• CacheDefaultExpire — Specifies the expiry time in hours for a document that was received
using a protocol that does not support expiry times. The default is set to 1 hour (3600 seconds).

• NoProxy — Specifies a space-separated list of subnets, IP addresses, domains, or hosts whose
content is not cached. This setting is most useful for Intranet sites.

Chapter 10. Apache HTTP Server 153

10.5.64. NameVirtualHost
The NameVirtualHost directive associates an IP address and port number, if necessary, for any
name-based virtual hosts. Name-based virtual hosting allows one Apache HTTP Server to serve dif-
ferent domains without using multiple IP addresses.

Note

Name-based virtual hosts only work with non-secure HTTP connections. If using virtual hosts with a
secure server, use IP address-based virtual hosts instead.

To enable name-based virtual hosting, uncomment the NameVirtualHost configuration directive
and add the correct IP address. Then add additional VirtualHost containers for each virtual host as
is necessary for your configuration.

10.5.65. VirtualHost
<VirtualHost> and </VirtualHost> tags create a container outlining the characteristics of a
virtual host. The VirtualHost container accepts most configuration directives.

A commented VirtualHost container is provided in httpd.conf, which illustrates the minimum
set of configuration directives necessary for each virtual host. Refer to Section 10.8 Virtual Hosts for
more information about virtual hosts.

Note

The default SSL virtual host container now resides in the file /etc/httpd/conf.d/ssl.conf.

10.5.66. Configuration Directives for SSL
The directives in /etc/httpd/conf.d/ssl.conffile can be configured to enable secure Web com-
munications using SSL and TLS.

10.5.66.1. SetEnvIf
SetEnvIf sets environment variables based on the headers of incoming connections. It is not solely an
SSL directive, though it is present in the supplied /etc/httpd/conf.d/ssl.conffile. It’s purpose
in this context is to disable HTTP keepalive and to allow SSL to close the connection without a closing
notification from the client browser. This setting is necessary for certain browsers that do not reliably
shut down the SSL connection.

For more information on other directives within the SSL configuration file, refer to the following
URLs:

• http://localhost/manual/mod/mod_ssl.html

• http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

For information about setting up an Apache HTTP Secure Server, Refer to the chapter titled Apache
HTTP Secure Server Configuration in the Red Hat Enterprise Linux System Administration Guide.

154 Chapter 10. Apache HTTP Server

Note

In most cases, SSL directives are configured appropriately during the installation of Red Hat Enter-
prise Linux. Be careful when altering Apache HTTP Secure Server directives, misconfiguration can
lead to security vulnerabilities.

10.6. Default Modules
The Apache HTTP Server is distributed with a number of modules. By default the following modules
are installed and enabled with the httpd package in Red Hat Enterprise Linux 4:

mod_access
mod_actions
mod_alias
mod_asis
mod_auth
mod_auth_anon
mod_auth_dbm
mod_auth_digest
mod_auth_ldap
mod_autoindex
mod_cache
mod_cern_meta
mod_cgi
mod_dav
mod_dav_fs
mod_deflate
mod_dir
mod_disk_cache
mod_env
mod_expires
mod_ext_filter
mod_file_cache
mod_headers
mod_imap
mod_include
mod_info
mod_ldap
mod_log_config
mod_logio
mod_mem_cache
mod_mime
mod_mime_magic
mod_negotiation
mod_proxy
mod_proxy_connect
mod_proxy_ftp
mod_proxy_http
mod_rewrite
mod_setenvif
mod_speling
mod_status
mod_suexec
mod_unique_id
mod_userdir
mod_usertrack

Chapter 10. Apache HTTP Server 155

mod_vhost_alias

Additionally, the following modules are available by installing additional packages:

mod_auth_kerb
mod_auth_mysql
mod_auth_pgsql
mod_authz_ldap
mod_dav_svn
mod_jkz
mod_perl
mod_python
mod_ssl
php

10.7. Adding Modules
The Apache HTTP Server supports Dynamically Shared Objects (DSOs), or modules, which can easily
be loaded at runtime as necessary.

The Apache Project provides complete DSO documentation online at http://httpd.apache.org/docs-
2.0/dso.html. Or, if the http-manual package is installed, documentation about DSOs can be found
online at http://localhost/manual/mod/.

For the Apache HTTP Server to use a DSO, it must be specified in a LoadModule directive within
/etc/httpd/conf/httpd.conf. If the module is provided by a separate package, the line must
appear within the modules configuration file in the /etc/httpd/conf.d/ directory. Refer to
Section 10.5.12 LoadModule for more information.

If adding or deleting modules from http.conf, Apache HTTP Server must be reloaded or restarted,
as referred to in Section 10.4 Starting and Stopping httpd.

If creating a new module, first install the httpd-devel package which contains the include files, the
header files, as well as the APache eXtenSion (/usr/sbin/apxs) application, which uses the include
files and the header files to compile DSOs.

After writing a module, use /usr/sbin/apxs to compile the module sources outside the Apache
source tree. For more information about using the /usr/sbin/apxs command, refer to the the
Apache documentation online at http://httpd.apache.org/docs-2.0/dso.html as well as the apxs man
page.

Once compiled, put the module in the /usr/lib/httpd/modules/ directory. Then add a
LoadModule line to the httpd.conf, using the following structure:

LoadModule <module-name> <path/to/module.so>

Where <module-name> is the name of the module and <path/to/module.so> is the path
to the DSO.

10.8. Virtual Hosts
The Apache HTTP Server’s built in virtual hosting allows the server to provide different information
based on which IP address, hostname, or port is being requested. A complete guide to using virtual
hosts is available online at http://httpd.apache.org/docs-2.0/vhosts/.

156 Chapter 10. Apache HTTP Server

10.8.1. Setting Up Virtual Hosts
To create a name-based virtual host, it is best to use the virtual host container provided in httpd.conf
as an example.

The virtual host example read as follows:

#NameVirtualHost *:80
#
#<VirtualHost *:80>

ServerAdmin webmaster@dummy-host.example.com
DocumentRoot /www/docs/dummy-host.example.com
ServerName dummy-host.example.com
ErrorLog logs/dummy-host.example.com-error_log
CustomLog logs/dummy-host.example.com-access_log common
#</VirtualHost>

To activate name-based virtual hosting, uncomment the NameVirtualHost line by removing the
hash mark (#) and replace the asterisk (*) with the IP address assigned to the machine.

Next, configure a virtual host by uncommenting and customizing the <VirtualHost> container.

On the <VirtualHost> line, change the asterisk (*) to the server’s IP address. Change the
ServerName to a valid DNS name assigned to the machine, and configure the other directives as
necessary.

The <VirtualHost> container is highly customizable and accepts almost every directive available
within the main server configuration.

Tip

If configuring a virtual host to listen on a non-default port, that port must be added to the Listen
directive in the global settings section of /etc/httpd/conf/httpd.conf file.

To activate a newly created virtual host, the Apache HTTP Server must be reloaded or restarted. Refer
to Section 10.4 Starting and Stopping httpd for further instructions.

Comprehensive information about creating and configuring both name-based and IP address-based
virtual hosts is provided online at http://httpd.apache.org/docs-2.0/vhosts/.

10.8.2. The Secure Web Server Virtual Host
By default, the Apache HTTP Server is configured as both a non-secure and a secure server. Both the
non-secure and secure servers use the same IP address and hostname, but listen on different ports: 80
and 443 respectively. This enables both non-secure and secure communications to take place simulta-
neously.

One aspect of SSL enhanced HTTP transmissions is that they are more resource intensive than the
standard HTTP protocol, so a secure server cannot serve as many pages per second. For this reason, it
is often a good idea to minimize the information available from the secure server, especially on a high
traffic website.

Chapter 10. Apache HTTP Server 157

Important

Do not use name-based virtual hosts in conjunction with a secure Web server as the SSL handshake
occurs before the HTTP request identifies the appropriate name-based virtual host. Name-based
virtual hosts only work with the non-secure Web server.

The configuration directives for the secure server are contained within virtual host tags in the
/etc/httpd/conf.d/ssl.conf file.

By default, both the secure and the non-secure Web servers share the same DocumentRoot. It is
recommended that a different DocumentRoot be made available for the secure Web server.

To stop the non-secure Web server from accepting connections, comment out the line in httpd.conf
which reads Listen 80 by placing a hash mark (#) at the beginning of the line. When finished, the
line looks like the following example:

#Listen 80

For more information on configuring an SSL enhanced Web server, refer to the chapter titled Apache
HTTP Secure Server Configuration in the Red Hat Enterprise Linux System Administration Guide.
For advanced configuration tips, refer to the Apache Software Foundation documentation available
online at the following URLs:

• http://httpd.apache.org/docs-2.0/ssl/

• http://httpd.apache.org/docs-2.0/vhosts/

10.9. Additional Resources
To learn more about the Apache HTTP Server, refer to the following resources.

10.9.1. Useful Websites

• http://httpd.apache.org/ — The official website for the Apache HTTP Server with documentation
on all the directives and default modules.

• http://www.modssl.org/ — The official website for mod_ssl.

• http://www.apacheweek.com/ — A comprehensive online weekly newsletter about all things
Apache.

10.9.2. Related Books

• Apache Desktop Reference by Ralf S. Engelschall; Addison Wesley — Written by ASF member
and mod_ssl author Ralf Engelschall, the Apache Desktop Reference provides a concise but com-
prehensive reference guide to using the Apache HTTP Server at compilation, configuration, and
run time. This book is available online at http://www.apacheref.com/.

• Professional Apache by Peter Wainwright; Wrox Press Ltd — Professional Apache is from Wrox
Press Ltd’s "Programmer to Programmer" series and is aimed at both experienced and novice Web
server administrators.

158 Chapter 10. Apache HTTP Server

• Administering Apache by Mark Allan Arnold; Osborne Media Group — This book is targeted at
Internet Service Providers who aim to provide more secure services.

• Apache Server Unleashed by Richard Bowen, et al; SAMS BOOKS — An encyclopedic source for
the Apache HTTP Server.

• Apache Pocket Reference by Andrew Ford, Gigi Estabrook; O’Reilly — This is the latest addition
to the O’Reilly Pocket Reference series.

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — Contains a chapter about
configuring the Apache HTTP Server using the HTTP Configuration Tool and a chapter about
configuring the Apache HTTP Server Secure Server.

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — The Server Security chapter explains
ways to secure Apache HTTP Server and other services.

Chapter 11.
Email

The birth of electronic mail (email) occurred in the early 1960s. The mailbox was a file in a user’s
home directory that was readable only by that user. Primitive mail applications appended new text
messages to the bottom of the file, making the user wade through the constantly growing file to find
any particular message. This system was only capable of sending messages to users on the same
system.

The first network transfer of an electronic mail message file took place in 1971 when a computer
engineer named Ray Tomlinson sent a test message between two machines via ARPANET — the
precursor to the Internet. Communication via email soon became very popular, comprising 75 percent
of ARPANET’s traffic in less than two years.

Today, email systems based on standardized network protocols have evolved into some of the most
widely used services on the Internet. Red Hat Enterprise Linux offers many advanced applications to
serve and access email.

This chapter reviews modern email protocols in use today and some of the programs designed to send
and receive email.

11.1. Email Protocols
Today, email is delivered using a client/server architecture. An email message is created using a mail
client program. This program then sends the message to a server. The server then forwards the message
to the recipient’s email server, where the message is then supplied to the recipient’s email client.

To enable this process, a variety of standard network protocols allow different machines, often running
different operating systems and using different email programs, to send and receive email.

The following protocols discussed are the most commonly used in the transfer of email.

11.1.1. Mail Transport Protocols
Mail delivery from a client application to the server, and from an originating server to the destination
server, is handled by the Simple Mail Transfer Protocol (SMTP).

11.1.1.1. SMTP
The primary purpose of SMTP is to transfer email between mail servers. However, it is critical for
email clients as well. To send email, the client sends the message to an outgoing mail server, which
in turn contacts the destination mail server for delivery. For this reason, it is necessary to specify an
SMTP server when configuring an email client.

Under Red Hat Enterprise Linux, a user can configure an SMTP server on the local machine to handle
mail delivery. However, it is also possible to configure remote SMTP servers for outgoing mail.

One important point to make about the SMTP protocol is that it does not require authentication. This
allows anyone on the Internet to send email to anyone else or even to large groups of people. It is this
characteristic of SMTP that makes junk email or spam possible. Modern SMTP servers attempt to
minimize this behavior by allowing only known hosts access to the SMTP server. Those servers that
do not impose such restrictions are called open relay servers.

160 Chapter 11. Email

By default, Sendmail (/usr/sbin/sendmail) is the default SMTP program under Red Hat Enter-
prise Linux. However, a simpler mail server application called Postfix (/usr/sbin/postfix) is also
available.

11.1.2. Mail Access Protocols
There are two primary protocols used by email client applications to retrieve email from mail servers:
the Post Office Protocol (POP) and the Internet Message Access Protocol (IMAP).

Unlike SMTP, both of these protocols require connecting clients to authenticate using a username and
password. By default, passwords for both protocols are passed over the network unencrypted.

11.1.2.1. POP
The default POP server under Red Hat Enterprise Linux is /usr/sbin/ipop3d and is provided
by the imap package. When using a POP server, email messages are downloaded by email client
applications. By default, most POP email clients are automatically configured to delete the message
on the email server after it has been successfully transferred, however this setting usually can be
changed.

POP is fully compatible with important Internet messaging standards, such as Multipurpose Internet
Mail Extensions (MIME), which allow for email attachments.

POP works best for users who have one system on which to read email. It also works well for users
who do not have a persistent connection to the Internet or the network containing the mail server.
Unfortunately for those with slow network connections, POP requires client programs upon authenti-
cation to download the entire content of each message. This can take a long time if any messages have
large attachments.

The most current version of the standard POP protocol is POP3.

There are, however, a variety of lesser-used POP protocol variants:

• APOP — POP3 with MDS authentication. An encoded hash of the user’s password is sent from the
email client to the server rather then sending an unencrypted password.

• KPOP — POP3 with Kerberos authentication. Refer to Chapter 19 Kerberos for more information.

• RPOP — POP3 with RPOP authentication. This uses a per-user ID, similar to a password, to au-
thenticate POP requests. However, this ID is not encrypted, so RPOP is no more secure than stan-
dard POP.

For added security, it is possible to use Secure Socket Layer (SSL) encryption for client authentica-
tion and data transfer sessions. This can be enabled by using the ipop3s service or by using the
/usr/sbin/stunnel program. Refer to Section 11.5.1 Securing Communication for more informa-
tion.

11.1.2.2. IMAP
The default IMAP server under Red Hat Enterprise Linux is /usr/sbin/imapd and is provided by
the imap package. When using an IMAP mail server, email messages remain on the server where
users can read or delete them. IMAP also allows client applications to create, rename, or delete mail
directories on the server to organize and store email.

IMAP is particularly useful for those who access their email using multiple machines. The protocol is
also convenient for users connecting to the mail server via a slow connection, because only the email
header information is downloaded for messages until opened, saving bandwidth. The user also has the
ability to delete messages without viewing or downloading them.

Chapter 11. Email 161

For convenience, IMAP client applications are capable of caching copies of messages locally, so the
user can browse previously read messages when not directly connected to the IMAP server.

IMAP, like POP, is fully compatible with important Internet messaging standards, such as MIME,
which allow for email attachments.

For added security, it is possible to use SSL encryption for client authentication and data transfer
sessions. This can be enabled by using the imaps service, or by using the /usr/sbin/stunnel
program. Refer to Section 11.5.1 Securing Communication for more information.

Other free, as well as commercial, IMAP clients and servers are available, many of which extend
the IMAP protocol and provide additional functionality. A comprehensive list can be found online at
http://www.imap.org/products/longlist.htm.

11.2. Email Program Classifications
In general, all email applications fall into at least one of three classifications. Each classification plays
a specific role in the process of moving and managing email messages. While most users are only
aware of the specific email program they use to receive and send messages, each one is important for
ensuring that email arrives at the correct destination.

11.2.1. Mail Transfer Agent
A Mail Transfer Agent (MTA) transfers email messages between hosts using SMTP. A message may
involve several MTAs as it moves to its intended destination.

While the delivery of messages between machines may seem rather straightforward, the entire process
of deciding if a particular MTA can or should accept a message for delivery is quite complicated. In
addition, due to problems from spam, use of a particular MTA is usually restricted by the MTA’s
configuration or the access configuration for the network on which the MTA resides.

Many modern email client programs can act as an MTA when sending email. However, this action
should not be confused with the role of a true MTA. The sole reason email client programs are capable
of sending email like an MTA is because the host running the application does not have its own MTA.
This is particularly true for email client programs on non-UNIX-based operating systems. However,
these client programs only send outbound messages to an MTA they are authorized to use and do not
directly deliver the message to the intended recipient’s email server.

Since Red Hat Enterprise Linux installs two MTAs, Sendmail and Postfix, email client programs are
often not required to act as an MTA. Red Hat Enterprise Linux also includes a special purpose MTA
called Fetchmail.

For more information on Sendmail, Postfix, and Fetchmail, refer to
Section 11.3 Mail Transport Agents.

11.2.2. Mail Delivery Agent
A Mail Delivery Agent (MDA) is invoked by the MTA to file incoming email in the proper user’s
mailbox. In many cases, the MDA is actually a Local Delivery Agent (LDA), such as mail or Procmail.

Any program that actually handles a message for delivery to the point where it can be read by an
email client application can be considered an MDA. For this reason, some MTAs (such as Sendmail
and Postfix) can fill the role of an MDA when they append new email messages to a local user’s mail
spool file. In general, MDAs do not transport messages between systems nor do they provide a user
interface; MDAs distribute and sort messages on the local machine for an email client application to
access.

162 Chapter 11. Email

11.2.3. Mail User Agent
A Mail User Agent (MUA) is synonymous with an email client application. An MUA is a program
that, at the very least, allows a user to read and compose email messages. Many MUAs are capable
of retrieving messages via the POP or IMAP protocols, setting up mailboxes to store messages, and
sending outbound messages to an MTA.

MUAs may be graphical, such as Mozilla Mail, or have a very simple, text-based interface, such as
mutt.

11.3. Mail Transport Agents
Red Hat Enterprise Linux includes two primary MTAs, Sendmail and Postfix. Sendmail is configured
as the default MTA, although it is easy to switch the default MTA to Postfix.

Tip

For information about how to switch the default MTA from Sendmail to Postfix, refer to the chapter
called Mail Transport Agent (MTA) Configuration in the Red Hat Enterprise Linux System Administra-
tion Guide.

11.3.1. Sendmail
Sendmail’s core purpose, like other MTAs, is to safely transfer email among hosts, usually using
the SMTP protocol. However, Sendmail is highly configurable, allowing control over almost every
aspect of how email is handled, including the protocol used. Many system administrators elect to use
Sendmail as their MTA due to its power and scalability.

11.3.1.1. Purpose and Limitations
It is important to be aware of what Sendmail is and what it can do, as opposed to what it is not. In these
days of monolithic applications that fulfill multiple roles, Sendmail may seem like the only application
needed to run an email server within an organization. Technically, this is true, as Sendmail can spool
mail to each users’ directory and deliver outbound mail for users. However, most users actually require
much more than simple email delivery. Users usually want to interact with their email using an MUA,
that uses POP or IMAP, to download their messages to their local machine. Or, they may prefer a
Web interface to gain access to their mailbox. These other applications can work in conjunction with
Sendmail, but they actually exist for different reasons and can operate separately from one another.

It is beyond the scope of this section to go into all that Sendmail should or could be configured to
do. With literally hundreds of different options and rule sets, entire volumes have been dedicated
to helping explain everything that can be done and how to fix things that go wrong. Refer to the
Section 11.6 Additional Resources for a list of Sendmail resources.

This section reviews the files installed with Sendmail by default and reviews basic configuration
changes, including how to stop unwanted email (spam) and how to extend Sendmail with the
Lightweight Directory Access Protocol (LDAP).

Chapter 11. Email 163

11.3.1.2. The Default Sendmail Installation
The Sendmail executable is /usr/sbin/sendmail.

Sendmail’s lengthy and detailed configuration file is /etc/mail/sendmail.cf. Avoid editing
the sendmail.cf file directly. Instead, to make configuration changes to Sendmail, edit the
/etc/mail/sendmail.mc file, back up the original /etc/mail/sendmail.cf, and then use the
included m4 macro processor to create a new /etc/mail/sendmail.cf. More information on
configuring Sendmail can be found in Section 11.3.1.3 Common Sendmail Configuration Changes.

Various Sendmail configuration files are installed in the /etc/mail/ directory including:

• access — Specifies which systems can use Sendmail for outbound email.

• domaintable — Specifies domain name mapping.

• local-host-names — Specifies aliases for the host.

• mailertable — Specifies instructions that override routing for particular domains.

• virtusertable — Specifies a domain-specific form of aliasing, allowing multiple virtual do-
mains to be hosted on one machine.

Several of the configuration files in /etc/mail/, such as access, domaintable, mailertable
and virtusertable, must actually store their information in database files before Sendmail can use
any configuration changes. To include any changes made to these configurations in their database files,
run the command

makemap hash /etc/mail/<name> < /etc/mail/<name>

where <name> is replaced with the name of the configuration file to convert.

For example, to have all emails addressed to the example.com domain delivered to
<bob@other-example.com>, add the following line to the virtusertable file:

@example.com bob@other-example.com

To finalize the change, the virtusertable.db file must be updated using the following command
as root:

makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable

This creates an updated virtusertable.db file containing the new configuration.

11.3.1.3. Common Sendmail Configuration Changes
When altering the Sendmail configuration file, it is best not to edit an existing file, but to generate an
entirely new /etc/mail/sendmail.cf file.

Caution

Before changing the sendmail.cf file, it is a good idea to create a backup copy.

To add the desired functionality to Sendmail, edit the /etc/mail/sendmail.mc file as the root
user. When finished, use the m4 macro processor to generate a new sendmail.cf by executing the
following command:

m4 /etc/mail/sendmail.mc > /etc/mail/sendmail.cf

164 Chapter 11. Email

By default, the m4 macro processor is installed with Sendmail but is part of the m4 package.

After creating a new /etc/mail/sendmail.cf file, restart Sendmail for the changes to take effect.
The easiest way to do this is to type the following command:

/sbin/service sendmail restart

Important

The default sendmail.cf file does not allow Sendmail to accept network connections from any
host other than the local computer. To configure Sendmail as a server for other clients, edit the
/etc/mail/sendmail.mc file, and either change the address specified in the Addr= option of the
DAEMON_OPTIONS directive from 127.0.0.1 to the IP address of an active network device or com-
ment out the DAEMON_OPTIONS directive all together by placing dnl at the beginning of the line. When
finished, regenerate /etc/mail/sendmail.cf by executing the following command:

m4 /etc/mail/sendmail.mc > /etc/mail/sendmail.cf

The default configuration which ships with Red Hat Enterprise Linux works for most SMTP-only
sites. However, it does not work for UUCP (UNIX to UNIX Copy) sites. If using UUCP mail trans-
fers, the /etc/mail/sendmail.mcfile must be reconfigured and a new /etc/mail/sendmail.cf
must be generated.

Consult the /usr/share/sendmail-cf/README file before editing any files in the directories
under the /usr/share/sendmail-cf directory, as they can affect the future configuration of
/etc/mail/sendmail.cf files.

11.3.1.4. Masquerading
One common Sendmail configuration is to have a single machine act as a mail gateway for
all machines on the network. For instance, a company may want to have a machine called
mail.example.com that handles all of their email and assigns a consistent return address to all
outgoing mail.

In this situation, the Sendmail server must masquerade the machine names on the company network
so that their return address is user@example.com instead of user@host.example.com.

To do this, add the following lines to /etc/mail/sendmail.mc:

FEATURE(always_add_domain)dnl
FEATURE(‘masquerade_entire_domain’)
FEATURE(‘masquerade_envelope’)
FEATURE(‘allmasquerade’)
MASQUERADE_AS(‘bigcorp.com.’)
MASQUERADE_DOMAIN(‘bigcorp.com.’)
MASQUERADE_AS(bigcorp.com)

After generating a new sendmail.cf using m4, this configuration makes all mail from inside the
network appear as if it were sent from bigcorp.com.

Chapter 11. Email 165

11.3.1.5. Stopping Spam
Email spam can be defined as unnecessary and unwanted email received by a user who never requested
the communication. It is a disruptive, costly, and widespread abuse of Internet communication stan-
dards.

Sendmail makes it relatively easy to block new spamming techniques being employed to send junk
email. It even blocks many of the more usual spamming methods by default.

For example, forwarding of SMTP messages, also called relaying, has been disabled by default since
Sendmail version 8.9. Before this change occurred, Sendmail directed the mail host (x.edu) to accept
messages from one party (y.com) and sent them to a different party (z.net). Now, however, Sendmail
must be configured to permit any domain to relay mail through the server. To configure relay domains,
edit the /etc/mail/relay-domains file and restart Sendmail.

However, many times users are bombarded with spam from other servers throughout the Internet. In
these instances, Sendmail’s access control features available through the /etc/mail/access file
can be used to prevent connections from unwanted hosts. The following example illustrates how this
file can be used to both block and specifically allow access to the Sendmail server:

badspammer.com ERROR:550 "Go away and do not spam us anymore"
tux.badspammer.com OK
10.0 RELAY

This example shows that any email sent from badspammer.com is blocked with a 550
RFC-821 compliant error code, with a message sent back to the spammer. Email sent from the
tux.badspammer.com sub-domain, is accepted. The last line shows that any email sent from the
10.0.*.* network can be relayed through the mail server.

Because /etc/mail/access.db is a database, use makemap to activate any changes. Do this using
the following command as root:

makemap hash /etc/mail/access < /etc/mail/access

This example only represents a small part of what Sendmail can do in terms of allowing or blocking
access. Refer to the /usr/share/sendmail-cf/README for more information and examples.

Since Sendmail calls the Procmail MDA when delivering mail, it is also possible to use a
spam filtering program, such as SpamAssassin, to identify and file spam for users. Refer to
Section 11.4.2.6 Spam Filters for more about using SpamAssassin.

11.3.1.6. Using Sendmail with LDAP
Using the Lightweight Directory Access Protocol (LDAP) is a very quick and powerful way to find
specific information about a particular user from a much larger group. For example, an LDAP server
can be used to look up a particular email address from a common corporate directory by the user’s last
name. In this kind of implementation, LDAP is largely separate from Sendmail, with LDAP storing
the hierarchical user information and Sendmail only being given the result of LDAP queries in pre-
addressed email messages.

However, Sendmail supports a much greater integration with LDAP, where it uses LDAP to replace
separately maintained files, such as aliases and virtusertables, on different mail servers that
work together to support a medium- to enterprise-level organization. In short, LDAP abstracts the mail
routing level from Sendmail and its separate configuration files to a powerful LDAP cluster that can
be leveraged by many different applications.

The current version of Sendmail contains support for LDAP. To extend the Sendmail server using
LDAP, first get an LDAP server, such as OpenLDAP, running and properly configured. Then edit the
/etc/mail/sendmail.mc to include the following:

166 Chapter 11. Email

LDAPROUTE_DOMAIN(’yourdomain.com’)dnl
FEATURE(’ldap_routing’)dnl

Note

This is only for a very basic configuration of Sendmail with LDAP. The configuration can differ greatly
from this depending on the implementation of LDAP, especially when configuring several Sendmail
machines to use a common LDAP server.

Consult /usr/share/sendmail-cf/README for detailed LDAP routing configuration instructions and
examples.

Next, recreate the /etc/mail/sendmail.cf file by running m4 and restarting Sendmail. Refer to
Section 11.3.1.3 Common Sendmail Configuration Changes for instructions.

For more information on LDAP, refer to Chapter 13 Lightweight Directory Access Protocol (LDAP).

11.3.2. Postfix
Originally developed at IBM by security expert and programmer Wietse Venema, Postfix is a
Sendmail-compatible MTA that is designed to be secure, fast, and easy to configure.

To improve security, Postfix uses a modular design, where small processes with limited privileges
are launched by a master daemon. The smaller, less privileged processes perform very specific tasks
related to the various stages of mail delivery and run in a change rooted environment to limit the
effects of attacks.

Configuring Postfix to accept network connections from hosts other than the local computer takes
only a few minor changes in its configuration file. Yet for those with more complex needs, Postfix
provides a variety of configuration options, as well as third party add ons that make it a very versatile
and full-featured MTA.

The configuration files for Postfix are human readable and support upward of 250 directives. Unlike
Sendmail, no macro processing is required for changes to take effect and the majority of the most
commonly used options are described in the heavily commented files.

Important

Before using Postfix, the default MTA must be switched from Sendmail to Postfix. Refer to the chapter
called Mail Transport Agent (MTA) Configuration in the Red Hat Enterprise Linux System Administra-
tion Guide for further details.

11.3.2.1. The Default Postfix Installation
The Postfix executable is /usr/sbin/postfix. This daemon launches all related processes needed
to handle mail delivery.

Postfix stores its configuration files in the /etc/postfix/ directory. The following is a list of the
more commonly used files:

• access — Used for access control, this file specifies which hosts are allowed to connect to Postfix.

Chapter 11. Email 167

• aliases — A configurable list required by the mail protocol.

• main.cf — The global Postfix configuration file. The majority of configuration options are speci-
fied in this file.

• master.cf — Specifies how Postfix interacts with various processes to accomplish mail delivery.

• transport — Maps email addresses to relay hosts.

Important

The default /etc/postfix/main.cf file does not allow Postfix to accept network connections from a
host other than the local computer. For instructions on configuring Postfix as a server for other clients,
refer to Section 11.3.2.2 Basic Postfix Configuration .

When changing some options within files in the /etc/postfix/ directory, it may be necessary to
restart the postfix service for the changes to take effect. The easiest way to do this is to type the
following command:

/sbin/service postfix restart

11.3.2.2. Basic Postfix Configuration
By default, Postfix does not accept network connections from any host other than the local host.
Perform the following steps as root to enable mail delivery for other hosts on the network:

• Edit the /etc/postfix/main.cf file with a text editor, such as vi.

• Uncomment the mydomain line by removing the hash mark (#), and replace domain.tld with
the domain the mail server is servicing, such as example.com.

• Uncomment the myorigin = $mydomain line.

• Uncomment the myhostname line, and replace host.domain.tld with the hostname for the
machine.

• Uncomment the mydestination = $myhostname, localhost.$mydomain line.

• Uncomment the mynetworks line, and replace 168.100.189.0/28 with a valid network set-
ting for hosts that can connect to the server.

• Uncomment the inet_interfaces = all line.

• Restart the postfix service.

Once these steps are complete, the host accepts outside emails for delivery.

Postfix has a large assortment of configuration options. One of the best ways to learn how to configure
Postfix is to read the comments within /etc/postfix/main.cf. Additional resources including in-
formation about LDAP and SpamAssassin integration are available online at http://www.postfix.org/.

11.3.3. Fetchmail
Fetchmail is an MTA which retrieves email from remote servers and delivers it to the local MTA.
Many users appreciate the ability to separate the process of downloading their messages located on a
remote server from the process of reading and organizing their email in an MUA. Designed with the
needs of dial-up users in mind, Fetchmail connects and quickly downloads all of the email messages

168 Chapter 11. Email

to the mail spool file using any number of protocols, including POP3 and IMAP. It can even forward
email messages to an SMTP server, if necessary.

Fetchmail is configured for each user through the use of a .fetchmailrc file in the user’s home
directory.

Using preferences in the .fetchmailrc file, Fetchmail checks for email on a remote server and
downloads it. It then delivers it to port 25 on the local machine, using the local MTA to place the
email in the correct user’s spool file. If Procmail is available, it is launched to filter the email and
place it in a mailbox so that it can be read by an MUA.

11.3.3.1. Fetchmail Configuration Options
Although it is possible to pass all necessary options on the command line to check for email on a
remote server when executing Fetchmail, using a .fetchmailrcfile is much easier. Place any desired
configuration options in the .fetchmailrcfile for those options to be used each time the fetchmail
command is issued. It is possible to override these at the time Fetchmail is run by specifying that
option on the command line.

A user’s .fetchmailrc file contains three classes of configuration options:

• global options — Gives Fetchmail instructions that control the operation of the program or provide
settings for every connection that checks for email.

• server options — Specifies necessary information about the server being polled, such as the host-
name, as well as preferences for specific email servers, such as the port to check or number of
seconds to wait before timing out. These options affect every user using that server.

• user options — Contains information, such as username and password, necessary to authenticate
and check for email using a specified email server.

Global options appear at the top of the .fetchmailrc file, followed by one or more server options,
each of which designate a different email server that Fetchmail should check. User options follow
server options for each user account checking that email server. Like server options, multiple user
options may be specified for use with a particular server as well as to check multiple email accounts
on the same server.

Server options are called into service in the .fetchmailrc file by the use of a special option verb,
poll or skip, that precedes any of the server information. The poll action tells Fetchmail to use
this server option when it is run, which checks for email using the specified user options. Any server
options after a skip action, however, are not checked unless this server’s hostname is specified when
Fetchmail is invoked. The skip option is useful when testing configurations in .fetchmailrc be-
cause it only checks skipped servers when specifically invoked, and does not affect any currently
working configurations.

A sample .fetchmailrc file looks similar to the following example:

set postmaster "user1"
set bouncemail

poll pop.domain.com proto pop3
user ’user1’ there with password ’secret’ is user1 here

poll mail.domain2.com
user ’user5’ there with password ’secret2’ is user1 here
user ’user7’ there with password ’secret3’ is user1 here

In this example, the global options specify that the user is sent email as a last resort (postmaster
option) and all email errors are sent to the postmaster instead of the sender (bouncemail option). The
set action tells Fetchmail that this line contains a global option. Then, two email servers are specified,
one set to check using POP3, the other for trying various protocols to find one that works. Two users

Chapter 11. Email 169

are checked using the second server option, but all email found for any user is sent to user1’s mail
spool. This allows multiple mailboxes to be checked on multiple servers, while appearing in a single
MUA inbox. Each user’s specific information begins with the user action.

Note

Users are not required to place their password in the .fetchmailrc file. Omitting the with password
’<password>’ section causes Fetchmail to ask for a password when it is launched.

Fetchmail has numerous global, server, and local options. Many of these options are rarely used or
only apply to very specific situations. The fetchmail man page explains each option in detail, but
the most common ones are listed here.

11.3.3.2. Global Options
Each global option should be placed on a single line after a set action.

• daemon <seconds> — Specifies daemon-mode, where Fetchmail stays in the background. Re-
place <seconds> with the number of seconds Fetchmail is to wait before polling the server.

• postmaster — Specifies a local user to send mail to in case of delivery problems.

• syslog — Specifies the log file for errors and status messages. By default, this is
/var/log/maillog.

11.3.3.3. Server Options
Server options must be placed on their own line in .fetchmailrc after a poll or skip action.

• auth <auth-type> — Replace <auth-type> with the type of authentication to be used. By
default, password authentication is used, but some protocols support other types of authentication,
including kerberos_v5, kerberos_v4, and ssh. If the any authentication type is used, Fetchmail
first tries methods that do not require a password, then methods that mask the password, and finally
attempts to send the password unencrypted to authenticate to the server.

• interval <number> — Polls the specified server every <number> of times that it checks for
email on all configured servers. This option is generally used for email servers where the user rarely
receives messages.

• port <port-number> — Replace <port-number> with the port number. This value over-
rides the default port number for the specified protocol.

• proto <protocol> — Replace <protocol> with the protocol, such as pop3 or imap, to use
when checking for messages on the server.

• timeout <seconds> — Replace <seconds> with the number of seconds of server inactivity
after which Fetchmail gives up on a connection attempt. If this value is not set, a default of 300
seconds is assumed.

170 Chapter 11. Email

11.3.3.4. User Options
User options may be placed on their own lines beneath a server option or on the same line as the server
option. In either case, the defined options must follow the user option (defined below).

• fetchall — Orders Fetchmail to download all messages in the queue, including messages that
have already been viewed. By default, Fetchmail only pulls down new messages.

• fetchlimit <number> — Replace <number> with the number of messages to be retrieved
before stopping.

• flush — Deletes all previously viewed messages in the queue before retrieving new messages.

• limit <max-number-bytes> — Replace <max-number-bytes> with the maximum size
in bytes that messages are allowed to be when retrieved by Fetchmail. This option is useful with
slow network links, when a large message takes too long to download.

• password ’<password>’ — Replace <password> with the user’s password.

• preconnect "<command>" — Replace <command> with a command to be executed before
retrieving messages for the user.

• postconnect "<command>" — Replace <command> with a command to be executed after
retrieving messages for the user.

• ssl — Activates SSL encryption.

• user "<username>" — Replace <username> with the username used by Fetchmail to re-
trieve messages. This option must precede all other user options.

11.3.3.5. Fetchmail Command Options
Most Fetchmail options used on the command line when executing the fetchmail command mirror
the .fetchmailrc configuration options. In this way, Fetchmail may be used with or without a
configuration file. These options are not used on the command line by most users because it is easier
to leave them in the .fetchmailrc file.

There may be times when it is desirable to run the fetchmail command with other options for a
particular purpose. It is possible to issue command options to temporarily override a .fetchmailrc
setting that is causing an error, as any options specified at the command line override configuration
file options.

11.3.3.6. Informational or Debugging Options
Certain options used after the fetchmail command can supply important information.

• --configdump — Displays every possible option based on information from .fetchmailrc and
Fetchmail defaults. No email is retrieved for any users when using this option.

• -s — Executes Fetchmail in silent mode, preventing any messages, other than errors, from appear-
ing after the fetchmail command.

• -v — Executes Fetchmail in verbose mode, displaying every communication between Fetchmail
and remote email servers.

• -V — Displays detailed version information, lists its global options, and shows settings to be used
with each user, including the email protocol and authentication method. No email is retrieved for
any users when using this option.

Chapter 11. Email 171

11.3.3.7. Special Options
These options are occasionally useful for overriding defaults often found in the .fetchmailrc file.

• -a — Fetchmail downloads all messages from the remote email server, whether new or previously
viewed. By default, Fetchmail only downloads new messages.

• -k — Fetchmail leaves the messages on the remote email server after downloading them. This
option overrides the default behavior of deleting messages after downloading them.

• -l <max-number-bytes> — Fetchmail does not download any messages over a particular size
and leaves them on the remote email server.

• --quit — Quits the Fetchmail daemon process.

More commands and .fetchmailrc options can be found in the fetchmail man page.

11.4. Mail Delivery Agents
Red Hat Enterprise Linux includes two primary MDAs, Procmail and mail. Both of the applications
are considered LDAs and both move email from the MTA’s spool file into the user’s mailbox. However,
Procmail provides a robust filtering system.

This section details only Procmail. For information on the mail command, consult its man page.

Procmail delivers and filters email as it is placed in the mail spool file of the localhost. It is powerful,
gentle on system resources, and widely used. Procmail can play a critical role in delivering email to
be read by email client applications.

Procmail can be invoked in several different ways. Whenever an MTA places an email into the mail
spool file, Procmail is launched. Procmail then filters and files the email for the MUA and quits.
Alternatively, the MUA can be configured to execute Procmail any time a message is received so that
messages are moved into their correct mailboxes. By default, the presence of /etc/procmailrc or
of a .procmailrc file (also called an rc file) in the user’s home directory invokes Procmail whenever
an MTA receives a new message.

Whether Procmail acts upon an email message depends upon whether the message matches a specified
set of conditions or recipes in the rc file. If a message matches a recipe, then the email is placed in a
specified file, is deleted, or is otherwise processed.

When Procmail starts, it reads the email message and separates the body from the header information.
Next, Procmail looks for /etc/procmailrc and rc files in the /etc/procmailrcs directory for
default, system-wide, Procmail environmental variables and recipes. Procmail then searches for a
.procmailrcfile in the user’s home directory. Many users also create additional rc files for Procmail
that are referred to within the .procmailrc file in their home directory.

By default, no system-wide rc files exist in the /etc/ directory and no .procmailrc files exist in
any user’s home directory. Therefore, to use Procmail, each user must construct a .procmailrc file
with specific environment variables and rules.

11.4.1. Procmail Configuration
The Procmail configuration file contains important environmental variables. These variables specify
things such as which messages to sort and what to do with the messages that do not match any recipes.

These environmental variables usually appear at the beginning of .procmailrc in the following
format:

<env-variable>="<value>"

172 Chapter 11. Email

In this example, <env-variable> is the name of the variable and <value> defines the variable.

There are many environment variables not used by most Procmail users and many of the more im-
portant environment variables are already defined by a default value. Most of the time, the following
variables are used:

• DEFAULT — Sets the default mailbox where messages that do not match any recipes are placed.

The default DEFAULT value is the same as $ORGMAIL.

• INCLUDERC — Specifies additional rc files containing more recipes for messages to be checked
against. This breaks up the Procmail recipe lists into individual files that fulfill different roles, such
as blocking spam and managing email lists, that can then be turned off or on by using comment
characters in the user’s .procmailrc file.

For example, lines in a user’s .procmailrc file may look like this:
MAILDIR=$HOME/Msgs
INCLUDERC=$MAILDIR/lists.rc
INCLUDERC=$MAILDIR/spam.rc

If the user wants to turn off Procmail filtering of their email lists but leave spam control in place,
they would comment out the first INCLUDERC line with a hash mark character (#).

• LOCKSLEEP — Sets the amount of time, in seconds, between attempts by Procmail to use a partic-
ular lockfile. The default is eight seconds.

• LOCKTIMEOUT — Sets the amount of time, in seconds, that must pass after a lockfile was last
modified before Procmail assumes that the lockfile is old and can be deleted. The default is 1024
seconds.

• LOGFILE — The file to which any Procmail information or error messages are written.

• MAILDIR — Sets the current working directory for Procmail. If set, all other Procmail paths are
relative to this directory.

• ORGMAIL — Specifies the original mailbox, or another place to put the messages if they cannot be
placed in the default or recipe-required location.

By default, a value of /var/spool/mail/$LOGNAME is used.

• SUSPEND — Sets the amount of time, in seconds, that Procmail pauses if a necessary resource, such
as swap space, is not available.

• SWITCHRC — Allows a user to specify an external file containing additional Procmail recipes,
much like the INCLUDERC option, except that recipe checking is actually stopped on the referring
configuration file and only the recipes on the SWITCHRC-specified file are used.

• VERBOSE — Causes Procmail to log more information. This option is useful for debugging.

Other important environmental variables are pulled from the shell, such as LOGNAME, which is the
login name; HOME, which is the location of the home directory; and SHELL, which is the default shell.

A comprehensive explanation of all environments variables, as well as their default values, is available
in the procmailrc man page.

11.4.2. Procmail Recipes
New users often find the construction of recipes the most difficult part of learning to use Procmail.
To some extent, this is understandable, as recipes do their message matching using regular
expressions, which is a particular format used to specify qualifications for a matching string.
However, regular expressions are not very difficult to construct and even less difficult to understand
when read. Additionally, the consistency of the way Procmail recipes are written, regardless of

Chapter 11. Email 173

regular expressions, makes it easy to learn by example. To see example Procmail recipes, refer to
Section 11.4.2.5 Recipe Examples.

Procmail recipes take the following form:

:0<flags>: <lockfile-name>

* <special-condition-character> <condition-1>

* <special-condition-character> <condition-2>

* <special-condition-character> <condition-N>

<special-action-character><action-to-perform>

The first two characters in a Procmail recipe are a colon and a zero. Various flags can be placed after
the zero to control how Procmail processes the recipe. A colon after the <flags> section specifies
that a lockfile is created for this message. If a lockfile is created, the name can be specified by replacing
<lockfile-name>.

A recipe can contain several conditions to match against the message. If it has no conditions, every
message matches the recipe. Regular expressions are placed in some conditions to facilitate message
matching. If multiple conditions are used, they must all match for the action to be performed. Con-
ditions are checked based on the flags set in the recipe’s first line. Optional special characters placed
after the * character can further control the condition.

The <action-to-perform> specifies the action taken when the message matches one of the con-
ditions. There can only be one action per recipe. In many cases, the name of a mailbox is used here
to direct matching messages into that file, effectively sorting the email. Special action characters may
also be used before the action is specified. Refer to Section 11.4.2.4 Special Conditions and Actions
for more information.

11.4.2.1. Delivering vs. Non-Delivering Recipes
The action used if the recipe matches a particular message determines whether it is considered a
delivering or non-delivering recipe. A delivering recipe contains an action that writes the message to
a file, sends the message to another program, or forwards the message to another email address. A non-
delivering recipe covers any other actions, such as a nesting block. A nesting block is a set of actions,
contained in braces { }, that are performed on messages which match the recipe’s conditions. Nesting
blocks can be nested inside one another, providing greater control for identifying and performing
actions on messages.

When messages match a delivering recipe, Procmail performs the specified action and stops compar-
ing the message against any other recipes. Messages that match non-delivering recipes continue to be
compared against other recipes.

11.4.2.2. Flags
Flags are essential to determine how or if a recipe’s conditions are compared to a message. The
following flags are commonly used:

• A — Specifies that this recipe is only used if the previous recipe without an A or a flag also matched
this message.

• a — Specifies that this recipe is only used if the previous recipe with an A or a flag also matched
this message and was successfully completed.

• B — Parses the body of the message and looks for matching conditions.

• b — Uses the body in any resulting action, such as writing the message to a file or forwarding it.
This is the default behavior.

174 Chapter 11. Email

• c — Generates a carbon copy of the email. This is useful with delivering recipes, since the required
action can be performed on the message and a copy of the message can continue being processed
in the rc files.

• D — Makes the egrep comparison case-sensitive. By default, the comparison process is not case-
sensitive.

• E — While similar to the A flag, the conditions in the recipe are only compared to the message if
the immediately preceding the recipe without an E flag did not match. This is comparable to an else
action.

• e— The recipe is compared to the message only if the action specified in the immediately preceding
recipe fails.

• f — Uses the pipe as a filter.

• H — Parses the header of the message and looks for matching conditions. This occurs by default.

• h — Uses the header in a resulting action. This is the default behavior.

• w — Tells Procmail to wait for the specified filter or program to finish, and reports whether or not
it was successful before considering the message filtered.

• W — Is identical to w except that "Program failure" messages are suppressed.

For a detailed list of additional flags, refer to the procmailrc man page.

11.4.2.3. Specifying a Local Lockfile
Lockfiles are very useful with Procmail to ensure that more than one process does not try to alter a
message simultaneously. Specify a local lockfile by placing a colon (:) after any flags on a recipe’s
first line. This creates a local lockfile based on the destination file name plus whatever has been set in
the LOCKEXT global environment variable.

Alternatively, specify the name of the local lockfile to be used with this recipe after the colon.

11.4.2.4. Special Conditions and Actions
Special characters used before Procmail recipe conditions and actions change the way they are inter-
preted.

The following characters may be used after the * character at the beginning of a recipe’s condition
line:

• ! — In the condition line, this character inverts the condition, causing a match to occur only if the
condition does not match the message.

• < — Checks if the message is under a specified number of bytes.

• > — Checks if the message is over a specified number of bytes.

The following characters are used to perform special actions:

• ! — In the action line, this character tells Procmail to forward the message to the specified email
addresses.

• $ — Refers to a variable set earlier in the rc file. This is often used to set a common mailbox that
is referred to by various recipes.

• | — Starts a specified program to process the message.

• { and } — Constructs a nesting block, used to contain additional recipes to apply to matching
messages.

Chapter 11. Email 175

If no special character is used at the beginning of the action line, Procmail assumes that the action line
is specifying the mailbox in which to write the message.

11.4.2.5. Recipe Examples
Procmail is an extremely flexible program, but as a result of this flexibility, composing Procmail
recipes from scratch can be difficult for new users.

The best way to develop the skills to build Procmail recipe conditions stems from a strong under-
standing of regular expressions combined with looking at many examples built by others. A thorough
explanation of regular expressions is beyond the scope of this section. The structure of Procmail
recipes and useful sample Procmail recipes can be found at various places on the Internet (such as
http://www.iki.fi/era/procmail/links.html). The proper use and adaptation of regular expressions can
be derived by viewing these recipe examples. In addition, introductory information about basic regular
expression rules can be found in the grep man page.

The following simple examples demonstrate the basic structure of Procmail recipes and can provide
the foundation for more intricate constructions.

A basic recipe may not even contain conditions, as is illustrated in the following example:

:0:
new-mail.spool

The first line specifies that a local lockfile is to be created but does not specify a name, so Procmail
uses the destination file name and appends the value specified in the LOCKEXT environment variable.
No condition is specified, so every message matches this recipe and is placed in the single spool
file called new-mail.spool, located within the directory specified by the MAILDIR environment
variable. An MUA can then view messages in this file.

A basic recipe, such as this, can be placed at the end of all rc files to direct messages to a default
location.

The following example matched messages from a specific email address and throws them away.

:0
* ^From: spammer@domain.com
/dev/null

With this example, any messages sent by spammer@domain.com are sent to the /dev/null device,
deleting them.

Caution

Be certain that rules are working as intended before sending messages to /dev/null for permanent
deletion. If a recipe inadvertently catches unintended messages, and those messages disappear, it
becomes difficult to troubleshoot the rule.

A better solution is to point the recipe’s action to a special mailbox, which can be checked from time
to time to look for false positives. Once satisfied that no messages are accidentally being matched,
delete the mailbox and direct the action to send the messages to /dev/null.

The following recipe grabs email sent from a particular mailing list and places it in a specified folder.

:0:
* ^(From|CC|To).*tux-lug
tuxlug

176 Chapter 11. Email

Any messages sent from the tux-lug@domain.com mailing list are placed in the tuxlug mailbox
automatically for the MUA. Note that the condition in this example matches the message if it has the
mailing list’s email address on the From, CC, or To lines.

Consult the many Procmail online resources available in Section 11.6 Additional Resources for more
detailed and powerful recipes.

11.4.2.6. Spam Filters
Because it is called by Sendmail, Postfix, and Fetchmail upon receiving new emails, Procmail can be
used as a powerful tool for combating spam.

This is particularly true when Procmail is used in conjunction with SpamAssassin. When used to-
gether, these two applications can quickly identify spam emails, and sort or destroy them.

SpamAssassin uses header analysis, text analysis, blacklists, a spam-tracking database, and self-
learning Bayesian spam analysis to quickly and accurately identify and tag spam.

The easiest way for a local user to use SpamAssassin is to place the following line near the top of the
~/.procmailrc file:

INCLUDERC=/etc/mail/spamassassin/spamassassin-default.rc

The /etc/mail/spamassassin/spamassassin-default.rc contains a simple Procmail rule
that activates SpamAssassin for all incoming email. If an email is determined to be spam, it is tagged
in the header as such and the title is prepended with the following pattern:

*****SPAM*****

The message body of the email is also prepended with a running tally of what elements caused it to
be diagnosed as spam.

To file email tagged as spam, a rule similar to the following can be used:

:0 Hw
* ^X-Spam-Status: Yes
spam

This rule files all email tagged in the header as spam into a mailbox called spam.

Since SpamAssassin is a Perl script, it may be necessary on busy servers to use the binary SpamAssas-
sin daemon (spamd) and client application (spamc). Configuring SpamAssassin this way, however,
requires root access to the host.

To start the spamd daemon, type the following command as root:

/sbin/service spamassassin start

To start the SpamAssassin daemon when the system is booted, use an initscript utility, such as the
Services Configuration Tool (system-config-services), to turn on the spamassassin service.
Refer to Section 1.4.2 Runlevel Utilities for more information about initscript utilities.

To configure Procmail to use the SpamAssassin client application instead of the Perl script, place the
following line near the top of the ~/.procmailrc file. For a system-wide configuration, place it in
/etc/procmailrc:

INCLUDERC=/etc/mail/spamassassin/spamassassin-spamc.rc

Chapter 11. Email 177

11.5. Mail User Agents
There are scores of mail programs available under Red Hat Enterprise Linux. There are full-featured,
graphical email client programs, such as Mozilla Mail or Ximian Evolution, as well as text-based
email programs such as mutt.

For instructions on using these applications, refer to the chapter titled Email Applications in the Red
Hat Enterprise Linux Step By Step Guide.

The remainder of this section focuses on securing communication between the client and server.

11.5.1. Securing Communication
Popular MUAs included with Red Hat Enterprise Linux, such as Mozilla Mail, Ximian Evolution,
and mutt offer SSL-encrypted email sessions.

Like any other service that flows over a network unencrypted, important email information, such
as usernames, passwords, and entire messages, may be intercepted and viewed by users on the net-
work. Additionally, since the standard POP and IMAP protocols pass authentication information un-
encrypted, it is possible for an attacker to gain access to user accounts by collecting usernames and
passwords as they are passed over the network.

11.5.1.1. Secure Email Clients
Most Linux MUAs designed to check email on remote servers support SSL encryption. To use SSL
when retrieving email, it must be enabled on both the email client and server.

SSL is easy to enable on the client-side, often done with the click of a button in the MUA’s configu-
ration window or via an option in the MUA’s configuration file. Secure IMAP and POP have known
port numbers (993 and 995, respectively) that the MUA uses to authenticate and download messages.

11.5.1.2. Securing Email Client Communications
Offering SSL encryption to IMAP and POP users on the email server is a simple matter.

First, create an SSL certificate. This can be done two ways: by applying to a Certificate Authority
(CA) for an SSL certificate or by creating a self-signed certificate.

Caution

Self-signed certificates should be used for testing purposes only. Any server used in a production
environment should use an SSL certificate granted by a CA.

To create a self-signed SSL certificate for IMAP, change to the /usr/share/ssl/certs/ directory
and type the following commands as root:

rm -f imapd.pem
make imapd.pem

Answer all of the questions to complete the process.

To create a self-signed SSL certificate for POP, change to the /usr/share/ssl/certs/ directory,
and type the following commands as root:

rm -f ipop3d.pem
make ipop3d.pem

178 Chapter 11. Email

Again, answer all of the questions to complete the process.

Important

Please be sure to remove the default imapd.pem and ipop3d.pem files before issuing each make
command.

Once finished, execute the /sbin/service xinetd restart command to restart the xinetd dae-
mon which controls imapd and ipop3d.

Alternatively, the stunnel command can be used as an SSL encryption wrapper around the standard,
non-secure daemons, imapd or pop3d.

The stunnel program uses external OpenSSL libraries included with Red Hat Enterprise Linux to
provide strong cryptography and protect the connections. It is best to apply to a CA to obtain an SSL
certificate, but it is also possible to create a self-signed certificate.

To create a self-signed SSL certificate, change to the /usr/share/ssl/certs/ directory, and type
the following command:

make stunnel.pem

Again, answer all of the questions to complete the process.

Once the certificate is generated, it is possible to use the stunnel command to start the imapd mail
daemon using the following command:

/usr/sbin/stunnel -d 993 -l /usr/sbin/imapd imapd

Once this command is issued, it is possible to open an IMAP email client and connect to the email
server using SSL encryption.

To start the pop3d using the stunnel command, type the following command:

/usr/sbin/stunnel -d 995 -l /usr/sbin/pop3d pop3d

For more information about how to use stunnel, read the stunnel man page or refer to
the documents in the /usr/share/doc/stunnel-<version-number>/ directory, where
<version-number> is the version number for stunnel.

11.6. Additional Resources
The following is a list of additional documentation about email applications.

11.6.1. Installed Documentation

• Information on configuring Sendmail is included with the sendmail and sendmail-cf packages.

• /usr/share/sendmail-cf/README.cf — Contains information on m4, file locations for
Sendmail, supported mailers, how to access enhanced features, and more.

In addition, the sendmail and aliases man pages contain helpful information covering various
Sendmail options and the proper configuration of the Sendmail /etc/mail/aliases file.

Chapter 11. Email 179

• /usr/share/doc/postfix-<version-number> — Contains a large amount of information
about ways to configure Postfix. Replace <version-number> with the version number of Post-
fix.

• /usr/share/doc/fetchmail-<version-number> — Contains a full list of Fetchmail fea-
tures in the FEATURES file and an introductory FAQ document. Replace <version-number>

with the version number of Fetchmail.

• /usr/share/doc/procmail-<version-number> — Contains a README file that provides an
overview of Procmail, a FEATURES file that explores every program feature, and an FAQ file with
answers to many common configuration questions. Replace <version-number> with the ver-
sion number of Procmail.

When learning how Procmail works and creating new recipes, the following Procmail man pages
are invaluable:

• procmail — Provides an overview of how Procmail works and the steps involved with filtering
email.

• procmailrc — Explains the rc file format used to construct recipes.

• procmailex — Gives a number of useful, real-world examples of Procmail recipes.

• procmailsc— Explains the weighted scoring technique used by Procmail to match a particular
recipe to a message.

• /usr/share/doc/spamassassin-<version-number>/— Contains a large amount of in-
formation pertaining to SpamAssassin. Replace <version-number> with the version num-
ber of the spamassassin package.

11.6.2. Useful Websites

• http://www.redhat.com/mirrors/LDP/HOWTO/Mail-Administrator-HOWTO.html — Provides an
overview of how email works, and examines possible email solutions and configurations on the
client and server sides.

• http://www.redhat.com/mirrors/LDP/HOWTO/Mail-User-HOWTO/ — Looks at email from the
user’s perspective, investigates various popular email client applications and gives an introduction
to topics such as aliases, forwarding, auto-replying, mailing lists, mail filters, and spam.

• http://www.redhat.com/mirrors/LDP/HOWTO/mini/Secure-POP+SSH.html — Demonstrates a
way to retrieve POP email using SSH with port forwarding, so that the email passwords and
messages are transferred securely.

• http://www.sendmail.net/ — Contains news, interviews, and articles concerning Sendmail, includ-
ing an expanded view of the many options available.

• http://www.sendmail.org/ — Offers a thorough technical breakdown of Sendmail features and con-
figuration examples.

• http://www.postfix.org/ — The Postfix project home page contains a wealth of information about
Postfix. The mailing list is a particularly good place to look for information.

• http://catb.org/~esr/fetchmail/ — The home page for Fetchmail, featuring an online manual, and a
thorough FAQ.

• http://www.procmail.org/ — The home page for Procmail with links to assorted mailing lists dedi-
cated to Procmail as well as various FAQ documents.

• http://www.ling.helsinki.fi/users/reriksso/procmail/mini-faq.html — An excellent Procmail FAQ,
offers troubleshooting tips, details about file locking, and the use of wildcard characters.

180 Chapter 11. Email

• http://www.uwasa.fi/~ts/info/proctips.html — Contains dozens of tips that make using Procmail
much easier. Includes instructions on how to test .procmailrc files and use Procmail scoring to
decide if a particular action should be taken.

• http://www.spamassassin.org/ — The official site of the SpamAssassin project.

11.6.3. Related Books

• Sendmail by Bryan Costales with Eric Allman et al; O’Reilly & Associates — A good Sendmail
reference written with the assistance of the original creator of Delivermail and Sendmail.

• Removing the Spam: Email Processing and Filtering by Geoff Mulligan; Addison-Wesley Pub-
lishing Company — A volume that looks at various methods used by email administrators using
established tools, such as Sendmail and Procmail, to manage spam problems.

• Internet Email Protocols: A Developer’s Guide by Kevin Johnson; Addison-Wesley Publishing
Company — Provides a very thorough review of major email protocols and the security they pro-
vide.

• Managing IMAP by Dianna Mullet and Kevin Mullet; O’Reilly & Associates — Details the steps
required to configure an IMAP server.

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — The Server Security chapter explains
ways to secure Sendmail and other services.

Chapter 12.
Berkeley Internet Name Domain (BIND)

On most modern networks, including the Internet, users locate other computers by name. This frees
users from the daunting task of remembering the numerical network address of network resources.
The most effective way to configure a network to allow such name-based connections is to set up a
Domain Name Service (DNS) or a nameserver, which resolves hostnames on the network to numerical
addresses and vice versa.

This chapter reviews the nameserver included in Red Hat Enterprise Linux, the Berkeley Internet
Name Domain (BIND) DNS server, with an emphasis on the structure of its configuration files and
how it may be administered both locally and remotely.

For instructions on configuring BIND using the graphical Domain Name Service Configuration Tool
(redhat-config-bind), refer to the chapter called BIND Configuration in the Red Hat Enterprise
Linux System Administration Guide.

Warning

If using the Domain Name Service Configuration Tool, do not manually edit any BIND configuration
files as all changes are overwritten the next time the Domain Name Service Configuration Tool is
used.

12.1. Introduction to DNS
When hosts on a network connect to one another via a hostname, also called a fully qualified domain
name (FQDN), DNS is used to associate the names of machines to the IP address for the host.

Use of DNS and FQDNs also has advantages for system administrators, allowing the flexibility to
change the IP address for a host without effecting name-based queries to the machine. Conversely,
administrators can shuffle which machines handle a name-based query.

DNS is normally implemented using centralized servers that are authoritative for some domains and
refer to other DNS servers for other domains.

When a client host requests information from a nameserver, it usually connects to port 53. The name-
server then attempts to resolve the FQDN based on its resolver library, which may contain authoritative
information about the host requested or cached data from an earlier query. If the nameserver does not
already have the answer in its resolver library, it queries other nameservers, called root nameservers,
to determine which nameservers are authoritative for the FQDN in question. Then, with that infor-
mation, it queries the authoritative nameservers to determine the IP address of the requested host. If
performing a reverse lookup, the same procedure is used, except the query is made with an unknown
IP address rather than a name.

12.1.1. Nameserver Zones
On the Internet, the FQDN of a host can be broken down into different sections. These sections
are organized into a hierarchy (much like a tree), with a main trunk, primary branches, secondary
branches, and so forth. Consider the following FQDN:

bob.sales.example.com

182 Chapter 12. Berkeley Internet Name Domain (BIND)

When looking at how an FQDN is resolved to find the IP address that relates to a particular system,
read the name from right to left, with each level of the hierarchy divided by periods (.). In this
example, com defines the top level domain for this FQDN. The name example is a sub-domain under
com, while sales is a sub-domain under example. The name furthest to the left, bob, identifies a
specific machine hostname.

Except for the hostname, each section is a called a zone, which defines a specific namespace. A
namespace controls the naming of the sub-domains to its left. While this example only contains two
sub-domains, a FQDN must contain at least one sub-domain but may include many more, depending
upon how the namespace is organized.

Zones are defined on authoritative nameservers through the use of zone files, which describe the
namespace of that zone, the mail servers to be used for a particular domain or sub-domain, and more.
Zone files are stored on primary nameservers (also called master nameservers), which are truly au-
thoritative and where changes are made to the files, and secondary nameservers (also called slave
nameservers), which receive their zone files from the primary nameservers. Any nameserver can be a
primary and secondary nameserver for different zones at the same time, and they may also be consid-
ered authoritative for multiple zones. It all depends on how the nameserver is configured.

12.1.2. Nameserver Types
There are four primary nameserver configuration types:

• master — Stores original and authoritative zone records for a namespace, and answers queries
about the namespace from other nameservers.

• slave — Answers queries from other nameservers concerning namespaces for which it is con-
sidered an authority. However, slave nameservers get their namespace information from master
nameservers.

• caching-only — Offers name to IP resolution services but is not authoritative for any zones. An-
swers for all resolutions are cached in memory for a fixed period of time, which is specified by the
retrieved zone record.

• forwarding — Forwards requests to a specific list of nameservers for name resolution. If none of
the specified nameservers can perform the resolution, the resolution fails.

A nameserver may be one or more of these types. For example, a nameserver can be a master for some
zones, a slave for others, and only offer forwarding resolutions for others.

12.1.3. BIND as a Nameserver
BIND performs name resolution services through the /usr/sbin/named daemon. BIND also in-
cludes an administration utility called /usr/sbin/rndc. More information about rndc can be found
in Section 12.4 Using rndc.

BIND stores its configuration files in the following locations:

• /etc/named.conf — The configuration file for the named daemon.

• /var/named/ directory — The named working directory which stores zone, statistic, and cache
files.

The next few sections review the BIND configuration files in more detail.

Chapter 12. Berkeley Internet Name Domain (BIND) 183

12.2. /etc/named.conf
The named.conf file is a collection of statements using nested options surrounded by opening and
closing ellipse characters, { }. Administrators must be careful when editing named.conf to avoid
syntactical errors as many seemingly minor errors prevent the named service from starting.

Warning

Do not manually edit the /etc/named.conf file or any files in the /var/named/ directory if you are
using the Domain Name Service Configuration Tool. Any manual changes to those files are over-
written the next time the Domain Name Service Configuration Tool is used.

A typical named.conf file is organized similar to the following example:

<statement-1> ["<statement-1-name>"] [<statement-1-class>] {
<option-1>;
<option-2>;
<option-N>;

};

<statement-2> ["<statement-2-name>"] [<statement-2-class>] {
<option-1>;
<option-2>;
<option-N>;

};

<statement-N> ["<statement-N-name>"] [<statement-N-class>] {
<option-1>;
<option-2>;
<option-N>;

};

12.2.1. Common Statement Types
The following types of statements are commonly used in /etc/named.conf:

12.2.1.1. acl Statement
The acl statement (or access control statement) defines groups of hosts which can then be permitted
or denied access to the nameserver.

An acl statement takes the following form:

acl <acl-name> {
<match-element>;
[<match-element>; ...]

};

In this statement, replace <acl-name> with the name of the access control list and replace
<match-element> with a semi-colon separated list of IP addresses. Most of the time, an
individual IP address or IP network notation (such as 10.0.1.0/24) is used to identify the IP
addresses within the acl statement.

The following access control lists are already defined as keywords to simplify configuration:

• any — Matches every IP address.

184 Chapter 12. Berkeley Internet Name Domain (BIND)

• localhost — Matches any IP address in use by the local system.

• localnets — Matches any IP address on any network to which the local system is connected.

• none — Matches no IP addresses.

When used in conjunction with other statements (such as the options statement), acl statements
can be very useful in preventing the misuse of a BIND nameserver.

The following example defines two access control lists and uses an options statement to define how
they are treated by the nameserver:

acl black-hats {
10.0.2.0/24;
192.168.0.0/24;

};

acl red-hats {
10.0.1.0/24;

};

options {
blackhole { black-hats; };
allow-query { red-hats; };
allow-recursion { red-hats; };

}

This example contains two access control lists, black-hats and red-hats. Hosts in the
black-hats list are denied access to the nameserver, while hosts in the red-hats list are given
normal access.

12.2.1.2. include Statement
The include statement allows files to be included in a named.conf file. In this way, sensitive con-
figuration data (such as keys) can be placed in a separate file with restrictive permissions.

An include statement takes the following form:

include "<file-name>"

In this statement, <file-name> is replaced with an absolute path to a file.

12.2.1.3. options Statement
The options statement defines global server configuration options and sets defaults for other state-
ments. It can be used to specify the location of the named working directory, the types of queries
allowed, and much more.

The options statement takes the following form:

options {
<option>;

[<option>; ...]
};

In this statement, the <option> directives are replaced with a valid option.

The following are commonly used options:

Chapter 12. Berkeley Internet Name Domain (BIND) 185

• allow-query — Specifies which hosts are allowed to query this nameserver. By default, all hosts
are allowed to query. An access control list, or collection of IP addresses or networks may be used
here to only allow particular hosts to query the nameserver.

• allow-recursion — Similar to allow-query, this option applies to recursive queries. By de-
fault, all hosts are allowed to perform recursive queries on the nameserver.

• blackhole — Specifies which hosts are not allowed to query the server.

• directory — Specifies the named working directory if different from the default value,
/var/named/.

• forward — Specifies the forwarding behavior of a forwarders directive.

The following options are accepted:

• first — Specifies that the nameservers listed in the forwarders directive be queried before
named attempts to resolve the name itself.

• only — Specifies that named does not attempt name resolution itself in the event queries to
nameservers specified in the forwarders directive fail.

• forwarders — Specifies a list of valid IP addresses for nameservers where requests should be
forwarded for resolution.

• listen-on — Specifies the network interface on which named listens for queries. By default, all
interfaces are used.

Using this directive on a DNS server which also acts a gateway, BIND can be configured to only
answer queries that originate from one of the networks.

A listen-on directive looks like the following example:
options {

listen-on { 10.0.1.1; };
};

In this example, only requests that arrive from the network interface serving the private network
(10.0.1.1) are accepted.

• notify — Controls whether named notifies the slave servers when a zone is updated. It accepts
the following options:

• yes — Notifies slave servers.

• no — Does not notify slave servers.

• explicit — Only notifies slave servers specified in an also-notify list within a zone state-
ment.

• pid-file — Specifies the location of the process ID file created by named.

• root-delegation-only — Turns on the enforcement of delegation properties in top-level do-
mains (TLDs) and root zones with an optional exclude list. Delegation is the process of separating a
single zone into multiple subzones. In order to create a delegated zone, items known as NS records
are used. NameServer records (delegation records) announce the authoritative nameservers for a
particular zone.

The following root-delegation-only example specifies an exclude list of TLDs from whom
undelegated responses are expected and trusted:
options {

root-delegation-only exclude { "ad"; "ar"; "biz"; "cr"; "cu"; "de"; "dm"; "id;
"lu"; "lv"; "md"; "ms"; "museum"; "name"; "no"; "pa";
"pf"; "se"; "sr"; "to"; "tw"; "us"; "uy"; };

};

186 Chapter 12. Berkeley Internet Name Domain (BIND)

• statistics-file — Specifies an alternate location for statistics files. By default, named statis-
tics are saved to the /var/named/named.stats file.

Dozens of other options are also available, many of which rely upon one another to
work properly. Refer to the BIND 9 Administrator Reference Manual referenced in
Section 12.7.1 Installed Documentation and the bind.conf man page for more details.

12.2.1.4. zone Statement
A zone statement defines the characteristics of a zone such as the location of its configuration file and
zone-specific options. This statement can be used to override the global options statements.

A zone statement takes the following form:

zone <zone-name> <zone-class> {
<zone-options>;
[<zone-options>; ...]

};

In this statement, <zone-name> is the name of the zone, <zone-class> is the optional class
of the zone, and <zone-options> is a list of options characterizing the zone.

The <zone-name> attribute for the zone statement is particularly important. It is the default
value assigned for the $ORIGIN directive used within the corresponding zone file located in the
/var/named/ directory. The named daemon appends the name of the zone to any non-fully qual-
ified domain name listed in the zone file.

For example, if a zone statement defines the namespace for example.com, use example.com as the
<zone-name> so it is placed at the end of hostnames within the example.com zone file.

For more information about zone files, see Section 12.3 Zone Files.

The most common zone statement options include the following:

• allow-query — Specifies the clients that are allowed to request information about this zone. The
default is to allow all query requests.

• allow-transfer — Specifies the slave servers that are allowed to request a transfer of the zone’s
information. The default is to allow all transfer requests.

• allow-update — Specifies the hosts that are allowed to dynamically update information in their
zone. The default is to deny all dynamic update requests.

Be careful when allowing hosts to update information about their zone. Do not enable this option
unless the host specified is completely trusted. In general, it better to have an administrator manually
update the records for a zone and reload the named service.

• file — Specifies the name of the file in the named working directory that contains the zone’s
configuration data.

• masters — Specifies the IP addresses from which to request authoritative zone information and is
used only if the zone is defined as type slave.

• notify — Specifies whether or not named notifies the slave servers when a zone is updated. This
directive accepts the following options:

• yes — Notifies slave servers.

• no — Does not notify slave servers.

• explicit — Only notifies slave servers specified in an also-notify list within a zone state-
ment.

Chapter 12. Berkeley Internet Name Domain (BIND) 187

• type — Defines the type of zone.

Below is a list of valid options:

• delegation-only— Enforces the delegation status of infrastructure zones such as COM, NET,
or ORG. Any answer that is received without an explicit or implicit delegation is treated as
NXDOMAIN. This option is only applicable in TLDs or root zone files used in recursive or caching
implementations.

• forward — Forwards all requests for information about this zone to other nameservers.

• hint — A special type of zone used to point to the root nameservers which resolve queries
when a zone is not otherwise known. No configuration beyond the default is necessary with a
hint zone.

• master — Designates the nameserver as authoritative for this zone. A zone should be set as the
master if the zone’s configuration files reside on the system.

• slave — Designates the nameserver as a slave server for this zone. Also specifies the IP address
of the master nameserver for the zone.

• zone-statistics — Configures named to keep statistics concerning this zone,
writing them to either the default location (/var/named/named.stats) or the
file listed in the statistics-file option in the server statement. Refer to
Section 12.2.2 Other Statement Types for more information about the server statement.

12.2.1.5. Sample zone Statements
Most changes to the /etc/named.conf file of a master or slave nameserver involves adding, mod-
ifying, or deleting zone statements. While these zone statements can contain many options, most
nameservers require only a small subset to function efficiently. The following zone statements are
very basic examples illustrating a master-slave nameserver relationship.

The following is an example of a zone statement for the primary nameserver hosting example.com
(192.168.0.1):

zone "example.com" IN {
type master;
file "example.com.zone";
allow-update { none; };

};

In the statement, the zone is identified as example.com, the type is set to master, and the named
service is instructed to read the /var/named/example.com.zone file. It also tells named not to
allow any other hosts to update.

A slave server’s zone statement for example.com is slightly different from the previous example.
For a slave server, the type is set to slave and in place of the allow-update line is a directive telling
named the IP address of the master server.

The following is an example slave server zone statement for example.com zone:

zone "example.com" {
type slave;
file "example.com.zone";
masters { 192.168.0.1; };

};

188 Chapter 12. Berkeley Internet Name Domain (BIND)

This zone statement configures named on the slave server to query the master server at the
192.168.0.1 IP address for information about the example.com zone. The information the slave
server receives from the master server is saved to the /var/named/example.com.zone file.

12.2.2. Other Statement Types
The following is a list of lesser used statement types available within named.conf:

• controls — Configures various security requirements necessary to use the rndc command to
administer the named service.

Refer to Section 12.4.1 Configuring /etc/named.conf to learn more about how the controls
statement is structured and available options.

• key "<key-name>" — Defines a particular key by name. Keys are used to authenticate various
actions, such as secure updates or the use of the rndc command. Two options are used with key:

• algorithm <algorithm-name> — The type of algorithm used, such as dsa or hmac-md5.

• secret "<key-value>" — The encrypted key.

Refer to Section 12.4.2 Configuring /etc/rndc.conf for instructions on how to write a key state-
ment.

• logging — Allows for the use of multiple types of logs, called channels. By using the channel
option within the logging statement, a customized type of log, with its own file name (file),
size limit (size), versioning (version), and level of importance (severity), can be constructed.
Once a customized channel has been defined, a category option is used to categorize the channel
and begin logging when named is restarted.

By default, named logs standard messages to the syslog daemon, which places them
in /var/log/messages. This occurs because several standard channels are built
into BIND with various severity levels, such as one that handles informational logging
messages (default_syslog) and another that specifically handles debugging messages
(default_debug). A default category, called default, uses the built-in channels to do normal
logging without any special configuration.

Customizing the logging process can be a very detailed process and is beyond the scope of this
chapter. For information on creating custom BIND logs, refer to the BIND 9 Administrator Refer-
ence Manual referenced in Section 12.7.1 Installed Documentation.

• server — Specifies options that affect how named should respond to remote nameservers, espe-
cially in regards to notifications and zone transfers.

The transfer-format option controls whether one resource record is sent with each message
(one-answer) or multiple resource records are sent with each message (many-answers). While
many-answers is more efficient, only newer BIND nameservers understand it.

• trusted-keys — Contains assorted public keys used for secure DNS (DNSSEC). Refer to
Section 12.5.3 Security for more information concerning BIND security.

• view "<view-name>" — Creates special views depending upon which network the host query-
ing the nameserver is on. This allows some hosts to receive one answer regarding a zone while other
hosts receive totally different information. Alternatively, certain zones may only be made available
to particular trusted hosts while non-trusted hosts can only make queries for other zones.

Multiple views may be used, but their names must be unique. The match-clients option spec-
ifies the IP addresses that apply to a particular view. Any options statements may also be used
within a view, overriding the global options already configured for named. Most view statements
contain multiple zone statements that apply to the match-clients list. The order in which view

Chapter 12. Berkeley Internet Name Domain (BIND) 189

statements are listed is important, as the first view statement that matches a particular client’s IP
address is used.

Refer to Section 12.5.2 Multiple Views for more information about the view statement.

12.2.3. Comment Tags
The following is a list of valid comment tags used within named.conf:

• // — When placed at the beginning of a line, that line is ignored by named.

• # — When placed at the beginning of a line, that line is ignored by named.

• /* and */ — When text is enclose in these tags, the block of text is ignored by named.

12.3. Zone Files
Zone files contain information about a namespace and are stored in the named working directory,
/var/named/, by default. Each zone file is named according to the file option data in the zone
statement, usually in a way that relates to the domain in question and identifies the file as containing
zone data, such as example.com.zone.

Each zone file may contain directives and resource records. Directives tell the nameserver to perform
tasks or apply special settings to the zone. Resource records define the parameters of the zone and as-
sign identities to individual hosts. Directives are optional, but resource records are required to provide
name service to a zone.

All directives and resource records should be entered on individual lines.

Comments can be placed after semicolon characters (;) in zone files.

12.3.1. Zone File Directives
Directives begin with the dollar sign character ($) followed by the name of the directive. They usually
appear at the top of the zone file.

The following are commonly used directives:

• $INCLUDE — Configures named to include another zone file in this zone file at the place where the
directive appears. This allows additional zone settings to be stored apart from the main zone file.

• $ORIGIN — Appends the domain name to unqualified records, such as those with the hostname
and nothing more.

For example, a zone file may contain the following line:
$ORIGIN example.com.

Any names used in resource records that do not end in a trailing period (.) are appended with
example.com.

Note

The use of the $ORIGIN directive is unnecessary if the zone is specified in /etc/named.conf
because the zone name is used as the value for the $ORIGIN directive by default.

190 Chapter 12. Berkeley Internet Name Domain (BIND)

• $TTL — Sets the default Time to Live (TTL) value for the zone. This is the length of time, in
seconds, a zone resource record is valid. Each resource record can contain its own TTL value,
which overrides this directive.

Increasing this value allows remote nameservers to cache the zone information for a longer period
of time, reducing the number of queries for the zone and lengthening the amount of time required
to proliferate resource record changes.

12.3.2. Zone File Resource Records
The primary component of a zone file is its resource records.

There are many types of zone file resource records. The following are used most frequently:

• A — Address record, which specifies an IP address to assign to a name, as in this example:
<host> IN A <IP-address>

If the <host> value is omitted, then an A record points to a default IP address for the top of the
namespace. This system is the target for all non-FQDN requests.

Consider the following A record examples for the example.com zone file:
IN A 10.0.1.3

server1 IN A 10.0.1.5

Requests for example.com are pointed to 10.0.1.3, while requests for server1.example.com
are pointed to 10.0.1.5.

• CNAME — Canonical name record, maps one name to another. This type of record is also known as
an alias record.

The next example tells named that any requests sent to the <alias-name> should point to the
host, <real-name>. CNAME records are most commonly used to point to services that use a
common naming scheme, such as www for Web servers.
<alias-name> IN CNAME <real-name>

In the following example, an A record binds a hostname to an IP address, while a CNAME record
points the commonly used www hostname to it.
server1 IN A 10.0.1.5
www IN CNAME server1

• MX — Mail eXchange record, which tells where mail sent to a particular namespace controlled by
this zone should go.

IN MX <preference-value> <email-server-name>

In this example, the <preference-value> allows numerical ranking of the email servers for a
namespace, giving preference to some email systems over others. The MX resource record with the
lowest <preference-value> is preferred over the others. However, multiple email servers
can possess the same value to distribute email traffic evenly among them.

The <email-server-name> may be a hostname or FQDN.
IN MX 10 mail.example.com.
IN MX 20 mail2.example.com.

In this example, the first mail.example.com email server is preferred to the
mail2.example.com email server when receiving email destined for the example.com domain.

• NS — NameServer record, which announces the authoritative nameservers for a particular zone.

This is an example of an NS record:
IN NS <nameserver-name>

The <nameserver-name> should be a FQDN.

Chapter 12. Berkeley Internet Name Domain (BIND) 191

Next, two nameservers are listed as authoritative for the domain. It is not important whether these
nameservers are slaves or if one is a master; they are both still considered authoritative.

IN NS dns1.example.com.
IN NS dns2.example.com.

• PTR — PoinTeR record, designed to point to another part of the namespace.

PTR records are primarily used for reverse name resolution, as they point IP addresses back to a
particular name. Refer to Section 12.3.4 Reverse Name Resolution Zone Files for more examples
of PTR records in use.

• SOA — Start Of Authority resource record, proclaims important authoritative information about a
namespace to the nameserver.

Located after the directives, an SOA resource record is the first resource record in a zone file.

The following example shows the basic structure of an SOA resource record:
@ IN SOA <primary-name-server> <hostmaster-email> (

<serial-number>

<time-to-refresh>

<time-to-retry>

<time-to-expire>

<minimum-TTL>)

The @ symbol places the $ORIGIN directive (or the zone’s name, if the $ORIGIN directive is not
set) as the namespace being defined by this SOA resource record. The hostname of the primary
nameserver that is authoritative for this domain is the <primary-name-server> directive,
and the email of the person to contact about this namespace is the <hostmaster-email>

directive.

The <serial-number> directive is a numerical value incremented every time the zone file is
altered to indicate it is time for named to reload the zone. The <time-to-refresh> directive
is the numerical value slave servers use to determine how long to wait before asking the master
nameserver if any changes have been made to the zone. The <serial-number> directive is a
numerical value used by the slave servers to determine if it is using outdated zone data and should
therefore refresh it.

The <time-to-retry> directive is a numerical value used by slave servers to determine the
length of time to wait before issuing a refresh request in the event the master nameserver is not
answering. If the master has not replied to a refresh request before the amount of time specified in
the <time-to-expire> directive elapses, the slave servers stop responding as an authority for
requests concerning that namespace.

The <minimum-TTL> directive is the quantity of time other nameservers cache the zone’s infor-
mation.

When configuring BIND, all times are specified in seconds. However, it is possible to use abbrevi-
ations when specifying units of time other than seconds, such as minutes (M), hours (H), days (D),
and weeks (W). The table in Table 12-1 shows an amount of time in seconds and the equivalent time
in another format.

Seconds Other Time Units

60 1M

1800 30M

3600 1H

10800 3H

21600 6H

43200 12H

192 Chapter 12. Berkeley Internet Name Domain (BIND)

Seconds Other Time Units

86400 1D

259200 3D

604800 1W

31536000 365D

Table 12-1. Seconds compared to other time units

The following example illustrates the form an SOA resource record might take when it is populated
with real values.

@ IN SOA dns1.example.com. hostmaster.example.com. (
2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

12.3.3. Example Zone File
Seen individually, directives and resource records can be difficult to grasp. However, when placed
together in a single file, they become easier to understand.

The following example shows a very basic zone file.

$ORIGIN example.com.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (

2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

IN NS dns1.example.com.
IN NS dns2.example.com.

IN MX 10 mail.example.com.
IN MX 20 mail2.example.com.

IN A 10.0.1.5

server1 IN A 10.0.1.5
server2 IN A 10.0.1.7
dns1 IN A 10.0.1.2
dns2 IN A 10.0.1.3

ftp IN CNAME server1
mail IN CNAME server1
mail2 IN CNAME server2
www IN CNAME server2

In this example, standard directives and SOA values are used. The authoritative nameservers are set
as dns1.example.com and dns2.example.com, which have A records that tie them to 10.0.1.2
and 10.0.1.3, respectively.

The email servers configured with the MX records point to server1 and server2 via CNAME records.
Since the server1 and server2 names do not end in a trailing period (.), the $ORIGIN domain

Chapter 12. Berkeley Internet Name Domain (BIND) 193

is placed after them, expanding them to server1.example.com and server2.example.com.
Through the related A resource records, their IP addresses can be determined.

FTP and Web services, available at the standard ftp.example.com and www.example.com names,
are pointed at the appropriate servers using CNAME records.

12.3.4. Reverse Name Resolution Zone Files
A reverse name resolution zone file is used to translate an IP address in a particular namespace into a
FQDN. It looks very similar to a standard zone file, except that PTR resource records are used to link
the IP addresses to a fully qualified domain name.

A PTR record looks similar to this:

<last-IP-digit> IN PTR <FQDN-of-system>

The <last-IP-digit> is the last number in an IP address which points to a particular system’s
FQDN.

In the follow example, IP addresses 10.0.1.20 through 10.0.1.25 are pointed to corresponding
FQDNs.

$ORIGIN 1.0.10.in-addr.arpa.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (

2001062501 ; serial
21600 ; refresh after 6 hours
3600 ; retry after 1 hour
604800 ; expire after 1 week
86400) ; minimum TTL of 1 day

IN NS dns1.example.com.
IN NS dns2.example.com.

20 IN PTR alice.example.com.
21 IN PTR betty.example.com.
22 IN PTR charlie.example.com.
23 IN PTR doug.example.com.
24 IN PTR ernest.example.com.
25 IN PTR fanny.example.com.

This zone file would be called into service with a zone statement in the named.conf file which looks
similar to the following:

zone "1.0.10.in-addr.arpa" IN {
type master;
file "example.com.rr.zone";
allow-update { none; };

};

There is very little difference between this example and a standard zone statement, except for the
zone name. Note that a reverse name resolution zone requires the first three blocks of the IP address
reversed followed by .in-addr.arpa. This allows the single block of IP numbers used in the reverse
name resolution zone file to be associated with the zone.

194 Chapter 12. Berkeley Internet Name Domain (BIND)

12.4. Using rndc
BIND includes a utility called rndc which allows command line administration of the named daemon
from the localhost or from a remote host.

In order to prevent unauthorized access to the named daemon, BIND uses a shared secret key au-
thentication method to grant privileges to hosts. This means an identical key must be present in both
/etc/named.conf and the rndc configuration file, /etc/rndc.conf.

12.4.1. Configuring /etc/named.conf
In order for rndc to connect to a named service, there must a controls statement in the BIND
server’s /etc/named.conf file.

The controls statement, shown in the following example, allows rndc to connect from the localhost.

controls {
inet 127.0.0.1 allow { localhost; } keys { <key-name>; };

};

This statement tells named to listen on the default TCP port 953 of the loopback address and allow
rndc commands coming from the localhost, if the proper key is given. The <key-name> specifies
a name in the key statement within the /etc/named.conf file. The next example illustrates a sample
key statement.

key "<key-name>" {
algorithm hmac-md5;
secret "<key-value>";

};

In this case, the <key-value> uses the HMAC-MD5 algorithm. Use the following command to
generate keys using the HMAC-MD5 algorithm:

dnssec-keygen -a hmac-md5 -b <bit-length> -n HOST <key-file-name>

A key with at least a 256-bit length is a good idea. The actual key that should be placed in the
<key-value> area can be found in the <key-file-name> file generated by this command.

Warning

Because /etc/named.conf is world-readable, it is a good idea to place the key statement in a sep-
arate file, readable only by root, and then use an include statement to reference it. For example:

include "/etc/rndc.key";

12.4.2. Configuring /etc/rndc.conf
The key is the most important statement in /etc/rndc.conf.

key "<key-name>" {
algorithm hmac-md5;
secret "<key-value>";

};

Chapter 12. Berkeley Internet Name Domain (BIND) 195

The <key-name> and <key-value> should be exactly the same as their settings in
/etc/named.conf.

To match the keys specified in the target server’s /etc/named.conf, add the following lines to
/etc/rndc.conf.

options {
default-server localhost;
default-key "<key-name>";

};

This directive sets a global default key. However, the rndc configuration file can also specify different
keys for different servers, as in the following example:

server localhost {
key "<key-name>";

};

Caution

Make sure that only the root user can read or write to the /etc/rndc.conf file.

For more information about the /etc/rndc.conf file, refer to the rndc.conf man page.

12.4.3. Command Line Options
An rndc command takes the following form:

rndc <options> <command> <command-options>

When executing rndc on a properly configured localhost, the following commands are available:

• halt — Stops the named service immediately.

• querylog — Logs all queries made to this nameserver.

• refresh — Refreshes the nameserver’s database.

• reload — Reloads the zone files but keeps all other previously cached responses. This command
also allows changes to zone files without losing all stored name resolutions.

If changes only affected a specific zone, reload only that specific zone by adding the name of the
zone after the reload command.

• stats — Dumps the current named statistics to the /var/named/named.stats file.

• stop — Stops the server gracefully, saving any dynamic update and Incremental Zone Transfers
(IXFR) data before exiting.

Occasionally, it may be necessary to override the default settings in the /etc/rndc.conf file. The
following options are available:

• -c <configuration-file> — Specifies the alternate location of a configuration file.

• -p <port-number> — Specifies a port number to use for the rndc connection other than port
953, the default.

• -s <server> — Specifies a server other than the default-server listed in /etc/rndc.conf.

196 Chapter 12. Berkeley Internet Name Domain (BIND)

• -y <key-name> — Specifies a key other than the default-key option in /etc/rndc.conf.

Additional information about these options can be found in the rndc man page.

12.5. Advanced Features of BIND
Most BIND implementations only use named to provide name resolution services or to act as an
authority for a particular domain or sub-domain. However, BIND version 9 has a number of advanced
features that allow for a more secure and efficient DNS service.

Caution

Some of these advanced features, such as DNSSEC, TSIG, and IXFR (which are defined in the
following section), should only be used in network environments with nameservers that support the
features. If the network environment includes non-BIND or older BIND nameservers, verify that each
advanced feature is supported before attempting to use it.

All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference
Manual referenced in Section 12.7.1 Installed Documentation.

12.5.1. DNS Protocol Enhancements
BIND supports Incremental Zone Transfers (IXFR), where a slave nameserver only downloads the up-
dated portions of a zone modified on a master nameserver. The standard transfer process requires that
the entire zone be transferred to each slave nameserver for even the smallest change. For very popular
domains with very lengthy zone files and many slave nameservers, IXFR makes the notification and
update process much less resource intensive.

Note that IXFR is only available when using dynamic updating to make changes to master zone
records. If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.
More information on dynamic updating is available in the BIND 9 Administrator Reference Manual.
See Section 12.7.1 Installed Documentation for more information.

12.5.2. Multiple Views
Through the use of the view statement in named.conf, BIND can present different information
depending which network a request originates from.

This is primarily used to deny sensitive DNS entries from clients outside of the local network, while
allowing queries from clients inside the local network.

The view statement uses the match-clients option to match IP addresses or entire networks and
give them special options and zone data.

12.5.3. Security
BIND supports a number of different methods to protect the updating and transfer of zones, on both
master and slave nameservers:

• DNSSEC — Short for DNS SECurity, this feature allows for zones to be cryptographically signed
with a zone key.

Chapter 12. Berkeley Internet Name Domain (BIND) 197

In this way, the information about a specific zone can be verified as coming from a nameserver that
has signed it with a particular private key, as long as the recipient has that nameserver’s public key.

BIND version 9 also supports the SIG(0) public/private key method of message authentication.

• TSIG — Short for Transaction SIGnatures, this feature allows a transfer from master to slave only
after verifying that a shared secret key exists on both nameservers.

This feature strengthens the standard IP address-based method of transfer authorization. An attacker
would not only need to have access to the IP address to transfer the zone, but they would also need
to know the secret key.

BIND version 9 also supports TKEY, which is another shared secret key method of authorizing
zone transfers.

12.5.4. IP version 6
BIND version 9 supports name service in IP version 6 (IPv6) environments through the use of A6 zone
records.

If the network environment includes both IPv4 and IPv6 hosts, use the lwresd lightweight resolver
daemon on all network clients. This daemon is a very efficient, caching-only nameserver which un-
derstands the new A6 and DNAME records used under IPv6. Refer to the lwresd man page for more
information.

12.6. Common Mistakes to Avoid
It is very common for beginners to make mistakes when editing BIND configuration files. Be sure to
avoid the following issues:

• Take care to increment the serial number when editing a zone file.

If the serial number is not incremented, the master nameserver has the correct, new information,
but the slave nameservers are never notified of the change and do not attempt to refresh their data
of that zone.

• Be careful to use ellipses and semi-colons correctly in the /etc/named.conf file.

An omitted semi-colon or unclosed ellipse section can cause named to refuse to start.

• Remember to place periods (.) in zone files after all FQDNs and omit them on hostnames.

A period at the end of a domain name denotes a fully qualified domain name. If the period is
omitted, then named appends the name of the zone or the $ORIGIN value to complete it.

• If a firewall is blocking connections from the named program to other nameservers, edit its config-
uration file.

By default, BIND version 9 uses random ports above 1024 to query other nameservers. Some
firewalls, however, expect all nameservers to communicate using only port 53. To force named to
use port 53, add the following line to the options statement of /etc/named.conf:
query-source address * port 53;

12.7. Additional Resources
The following sources of information provide additional resources regarding BIND.

198 Chapter 12. Berkeley Internet Name Domain (BIND)

12.7.1. Installed Documentation

• BIND features a full-range of installed documentation covering many different topics, each placed
in its own subject directory:

• /usr/share/doc/bind-<version-number>/ — This directory lists the most recent fea-
tures. Replace <version-number> with the version of bind installed on the system.

• /usr/share/doc/bind-<version-number>/arm/ — This directory contains HTML
and SGML of the BIND 9 Administrator Reference Manual, which details BIND resource
requirements, how to configure different types of nameservers, perform load balancing, and
other advanced topics. For most new users of BIND, this is the best place to start. Replace
<version-number> with the version of bind installed on the system.

• /usr/share/doc/bind-<version-number>/draft/ — This directory contains assorted
technical documents that reviews issues related to DNS service and some methods proposed to
address them. Replace <version-number> with the version of bind installed on the system.

• /usr/share/doc/bind-<version-number>/misc/ — This directory contains
documents designed to address specific advanced issues. Users of BIND version 8 should
consult the migration document for specific changes they must make when moving to
BIND 9. The options file lists all of the options implemented in BIND 9 that are used in
/etc/named.conf. Replace <version-number> with the version of bind installed on
the system.

• /usr/share/doc/bind-<version-number>/rfc/ — This directory privides every RFC
document related to BIND. Replace <version-number> with the version of bind installed
on the system.

• BIND related man pages — There are a number of man pages for the various applications and
configuration files involved with BIND. The following lists some of the more important man pages.

Administrative Applications

• man rndc — Explains the different options available when using the rndc command to
control a BIND nameserver.

Server Applications

• man named — Explores assorted arguments that can be used to control the BIND name-
server daemon.

• man lwresd — Describes the purpose of and options available for the lightweight resolver
daemon.

Configuration Files

• man named.conf — A comprehensive list of options available within the named configu-
ration file.

• man rndc.conf — A comprehensive list of options available within the rndc configura-
tion file.

Chapter 12. Berkeley Internet Name Domain (BIND) 199

12.7.2. Useful Websites

• http://www.isc.org/products/BIND/ — The home page of the BIND project containing information
about current releases as well as a PDF version of the BIND 9 Administrator Reference Manual.

• http://www.redhat.com/mirrors/LDP/HOWTO/DNS-HOWTO.html — Covers the use of BIND as
a resolving, caching nameserver and the configuration of various zone files necessary to serve as
the primary nameserver for a domain.

12.7.3. Related Books

• Red Hat Enterprise Linux System Administration Guide — The BIND Configuration chapter ex-
plains how to set up a DNS server using the Domain Name Service Configuration Tool.

• DNS and BIND by Paul Albitz and Cricket Liu; O’Reilly & Associates — A popular reference that
explains both common and esoteric BIND configuration options, as well as providing strategies for
securing a DNS server.

• The Concise Guide to DNS and BIND by Nicolai Langfeldt; Que — Looks at the connection be-
tween multiple network services and BIND, with an emphasis on task-oriented, technical topics.

200 Chapter 12. Berkeley Internet Name Domain (BIND)

Chapter 13.
Lightweight Directory Access Protocol (LDAP)

The Lightweight Directory Access Protocol (LDAP) is a set of open protocols used to access centrally
stored information over a network. It is based on the X.500 standard for directory sharing, but is
less complex and resource intensive. For this reason, LDAP is sometimes referred to as "X.500 Lite."
The X.500 standard is a directory that contains hierarchical and categorized information, which could
include information such as names, addresses, and phone numbers.

Like X.500, LDAP organizes information in a hierarchal manner using directories. These directories
can store a variety of information and can even be used in a manner similar to the Network Informa-
tion Service (NIS), enabling anyone to access their account from any machine on the LDAP enabled
network.

In many cases, LDAP is used as a virtual phone directory, allowing users to easily access contact infor-
mation for other users. But LDAP is more flexible than a traditional phone directory, as it is capable of
referring a querent to other LDAP servers throughout the world, providing an ad-hoc global repository
of information. Currently, however, LDAP is more commonly used within individual organizations,
like universities, government departments, and private companies.

LDAP is a client/server system. The server can use a variety of databases to store a directory, each
optimized for quick and copious read operations. When an LDAP client application connects to an
LDAP server, it can either query a directory or attempt to modify it. In the event of a query, the
server either answers the query locally, or it can refer the querent to an LDAP server which does have
the answer. If the client application is attempting to modify information within an LDAP directory,
the server verifies that the user has permission to make the change and then adds or updates the
information.

This chapter refers to the configuration and use of OpenLDAP 2.0, an open source implementation of
the LDAPv2 and LDAPv3 protocols.

13.1. Why Use LDAP?
The main benefit of using LDAP is that information for an entire organization can be consolidated
into a central repository. For example, rather than managing user lists for each group within an or-
ganization, LDAP can be used as a central directory accessible from anywhere on the network. And
because LDAP supports Secure Sockets Layer (SSL) and Transport Layer Security (TLS), sensitive
data can be protected from prying eyes.

LDAP also supports a number of back-end databases in which to store directories. This allows admin-
istrators the flexibility to deploy the database best suited for the type of information the server is to
disseminate. Because LDAP also has a well-defined client Application Programming Interface (API),
the number of LDAP-enabled applications are numerous and increasing in quantity and quality.

13.1.1. OpenLDAP Features
OpenLDAP includes a number of important features.

• LDAPv3 Support — OpenLDAP supports Simple Authentication and Security Layer (SASL),
Transport Layer Security (TLS), and Secure Sockets Layer (SSL), among other improvements.
Many of the changes in the protocol since LDAPv2 are designed to make LDAP more secure.

• IPv6 Support — OpenLDAP supports the next generation Internet Protocol version 6.

202 Chapter 13. Lightweight Directory Access Protocol (LDAP)

• LDAP Over IPC — OpenLDAP can communicate within a system using interprocess communica-
tion (IPC). This enhances security by eliminating the need to communicate over a network.

• Updated C API — Improves the way programmers can connect to and use LDAP directory servers.

• LDIFv1 Support — Provides full compliance with the LDAP Data Interchange Format (LDIF)
version 1.

• Enhanced Stand-Alone LDAP Server — Includes an updated access control system, thread pooling,
better tools, and much more.

13.2. LDAP Terminology
Any discussion of LDAP requires a basic understanding of a set of LDAP-specific terms:

• entry — A single unit within an LDAP directory. Each entry is identified by its unique Distinguished
Name (DN).

• attributes — Information directly associated with an entry. For example, an organization could
be represented as an LDAP entry. Attributes associated with the organization might include a fax
number, an address, and so on. People can also be represented as entries in an LDAP directory, with
common attributes such as the person’s telephone number and email address.

Some attributes are required, while other attributes are optional. An objectclass definition sets
which attributes are required for each entry. Objectclass definitions are found in various schema
files, located in the /etc/openldap/schema/ directory. For more information, refer to
Section 13.5 The /etc/openldap/schema/ Directory.

• LDIF — The LDAP Data Interchange Format (LDIF) is an ASCII text representation of LDAP
entries. Files used for importing data to LDAP servers must be in LDIF format. An LDIF entry
looks similar to the following example:
[<id>]
dn: <distinguished name>

<attrtype>: <attrvalue>

<attrtype>: <attrvalue>

<attrtype>: <attrvalue>

Each entry can contain as many <attrtype>: <attrvalue> pairs as needed. A blank line
indicates the end of an entry.

Caution

All <attrtype> and <attrvalue> pairs must be defined in a corresponding schema file to use
this information.

Any value enclosed within a < and a > is a variable and can be set whenever a new LDAP entry
is created. This rule does not apply, however, to <id>. The <id> is a number determined by the
application used to edit the entry.

13.3. OpenLDAP Daemons and Utilities
The suite of OpenLDAP libraries and tools are included within the following packages:

• openldap — Contains the libraries necessary to run the OpenLDAP server and client applications.

• openldap-clients— Contains command line tools for viewing and modifying directories on an
LDAP server.

Chapter 13. Lightweight Directory Access Protocol (LDAP) 203

• openldap-servers — Contains the servers and other utilities necessary to configure and run an
LDAP server.

There are two servers contained in the openldap-servers package: the Standalone
LDAP Daemon (/usr/sbin/slapd) and the Standalone LDAP Update Replication Daemon
(/usr/sbin/slurpd).

The slapd daemon is the standalone LDAP server while the slurpd daemon is used to synchronize
changes from one LDAP server to other LDAP servers on the network. The slurpd daemon is only
used when dealing with multiple LDAP servers.

To perform administrative tasks, the openldap-servers package installs the following utilities into
the /usr/sbin/ directory:

• slapadd — Adds entries from an LDIF file to an LDAP directory. For example, the command
/usr/sbin/slapadd -l ldif-input reads in the LDIF file, ldif-input, containing the new
entries.

Important

Only the root user may use /usr/sbin/slapadd. However, the directory server runs as the ldap
user. Therefore the directory server is unable to modify any files created by slapadd. To correct
this issue, after using slapadd, type the following command:

chown -R ldap /var/lib/ldap

• slapcat — Pulls entries from an LDAP directory in the default format, Sleepycat
Software’s Berkeley DB system, and saves them in an LDIF file. For example, the command
/usr/sbin/slapcat -l ldif-output outputs an LDIF file called ldif-output containing
the entries from the LDAP directory.

• slapindex — Re-indexes the slapd directory based on the current content. This tool should be
run whenever indexing options within /etc/openldap/slapd.conf are changed.

• slappasswd — Generates an encrypted user password value for use with ldapmodify or the
rootpw value in the slapd configuration file, /etc/openldap/slapd.conf. Execute the
/usr/sbin/slappasswd command to create the password.

Warning

You must stop slapd by issuing the /sbin/service ldap stop command before using slapadd,
slapcat or slapindex. Otherwise, the integrity of the LDAP directory is at risk.

For more information on using these utilities, refer to their respective man pages.

The openldap-clients package installs tools into /usr/bin/ which are used to add, modify, and
delete entries in an LDAP directory. These tools include the following:

• ldapadd — Adds entries to an LDAP directory by accepting input via a file or standard input;
ldapadd is actually a hard link to ldapmodify -a.

• ldapdelete — Deletes entries from an LDAP directory by accepting user input at a shell prompt
or via a file.

• ldapmodify — Modifies entries in an LDAP directory, accepting input via a file or standard input.

• ldappasswd — Sets the password for an LDAP user.

• ldapsearch — Searches for entries in an LDAP directory using a shell prompt.

204 Chapter 13. Lightweight Directory Access Protocol (LDAP)

With the exception of ldapsearch, each of these utilities is more easily used by referencing a file
containing the changes to be made rather than typing a command for each entry to be changed within
an LDAP directory. The format of such a file is outlined in the man page for each utility.

13.3.1. NSS, PAM, and LDAP
In addition to the OpenLDAP packages, Red Hat Enterprise Linux includes a package called
nss_ldap, which enhances LDAP’s ability to integrate into both Linux and other UNIX
environments.

The nss_ldap package provides the following modules:

• /lib/libnss_ldap-<glibc-version>.so

• /lib/security/pam_ldap.so

The nss_ldap package provides the following modules for Itanium or AMD64 architectures:

• /lib64/libnss_ldap-<glibc-version>.so

• /lib64/security/pam_ldap.so

The libnss_ldap-<glibc-version>.so module allows applications to look up users, groups,
hosts, and other information using an LDAP directory via glibc’s Nameservice Switch (NSS) interface
(replace <glibc-version> with the version of libnss_ldap in use). NSS allows applications
to authenticate using LDAP in conjunction with the NIS name service and flat authentication files.

The pam_ldapmodule allows PAM-aware applications to authenticate users using information stored
in an LDAP directory. PAM-aware applications include console login, POP and IMAP mail servers,
and Samba. By deploying an LDAP server on a network, all of these applications can authenticate
using the same user ID and password combination, greatly simplifying administration.

For more about configuring PAM, refer to Chapter 16 Pluggable Authentication Modules (PAM) and
the PAM man pages.

13.3.2. PHP4, LDAP, and the Apache HTTP Server
Red Hat Enterprise Linux includes a package containing an LDAP module for the PHP server-side
scripting language.

The php-ldap package adds LDAP support to the PHP4 HTML-embedded scripting language via the
/usr/lib/php4/ldap.so module. This module allows PHP4 scripts to access information stored
in an LDAP directory.

Red Hat Enterprise Linux ships with the mod_authz_ldap module for the Apache HTTP Server.
This module uses the short form of the distinguished name for a subject and the issuer of the client
SSL certificate to determine the distinguished name of the user within an LDAP directory. It is also
capable of authorizing users based on attributes of that user’s LDAP directory entry, determining
access to assets based on the user and group privileges of the asset, and denying access for users with
expired passwords. The mod_ssl module is required when using the mod_authz_ldap module.

Important

The mod_authz_ldap module does not authenticate a user to an LDAP directory using an encrypted
password hash. This functionality is provided by the experimental mod_auth_ldap module, which is
not included with Red Hat Enterprise Linux. Refer to the Apache Software Foundation website online
at http://www.apache.org/ for details on the status of this module.

Chapter 13. Lightweight Directory Access Protocol (LDAP) 205

13.3.3. LDAP Client Applications
There are graphical LDAP clients available which support creating and modifying directories, but they
are not included with Red Hat Enterprise Linux. One such application is LDAP Browser/Editor —
A Java-based tool available online at http://www.iit.edu/~gawojar/ldap/.

Most other LDAP clients access directories as read-only, using them to reference, but not alter,
organization-wide information. Some examples of such applications are Sendmail, Mozilla, Gnome
Meeting, and Evolution.

13.4. OpenLDAP Configuration Files
OpenLDAP configuration files are installed into the /etc/openldap/ directory. The following is a
brief list highlighting the most important directories and files:

• /etc/openldap/ldap.conf — This is the configuration file for all client applications which
use the OpenLDAP libraries such as ldapsearch, ldapadd, Sendmail, Evolution, and Gnome
Meeting.

• /etc/openldap/slapd.conf — This is the configuration file for the slapd daemon. Refer to
Section 13.6.1 Editing /etc/openldap/slapd.conf for more information file.

• /etc/openldap/schema/ directory — This subdirectory contains the schema used by the slapd
daemon. Refer to Section 13.5 The /etc/openldap/schema/ Directory for more information.

Note

If the nss_ldap package is installed, it creates a file named /etc/ldap.conf. This file
is used by the PAM and NSS modules supplied by the nss_ldap package. Refer to
Section 13.7 Configuring a System to Authenticate Using OpenLDAP for more information.

13.5. The /etc/openldap/schema/ Directory
The /etc/openldap/schema/ directory holds LDAP definitions, previously located in the
slapd.at.conf and slapd.oc.conf files. The /etc/openldap/schema/redhat/ directory
holds customized schemas distributed by Red Hat for Red Hat Enterprise Linux.

All attribute syntax definitions and objectclass definitions are now located in the different schema files.
The various schema files are referenced in /etc/openldap/slapd.conf using include lines, as
shown in this example:

include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema
include /etc/openldap/schema/rfc822-MailMember.schema
include /etc/openldap/schema/redhat/autofs.schema

206 Chapter 13. Lightweight Directory Access Protocol (LDAP)

Caution

Do not modify schema items defined in the schema files installed by OpenLDAP.

It is possible to extend the schema used by OpenLDAP to support additional attribute types and object
classes using the default schema files as a guide. To do this, create a local.schema file in the
/etc/openldap/schema/ directory. Reference this new schema within slapd.conf by adding the
following line below the default include schema lines:

include /etc/openldap/schema/local.schema

Next, define new attribute types and object classes within the local.schema file. Many organizations
use existing attribute types from the schema files installed by default and add new object classes to
the local.schema file.

Extending the schema to match certain specialized requirements is quite involved and beyond the
scope of this chapter. Refer to http://www.openldap.org/doc/admin/schema.html for information.

13.6. OpenLDAP Setup Overview
This section provides a quick overview for installing and configuring an OpenLDAP directory. For
more details, refer to the following URLs:

• http://www.openldap.org/doc/admin/quickstart.html — The Quick-Start Guide on the OpenLDAP
website.

• http://www.redhat.com/mirrors/LDP/HOWTO/LDAP-HOWTO.html — The LDAP Linux HOWTO
from the Linux Documentation Project, mirrored on Red Hat’s website.

The basic steps for creating an LDAP server are as follows:

1. Install the openldap, openldap-servers, and openldap-clients RPMs.

2. Edit the /etc/openldap/slapd.conf file to specify the LDAP domain and server. Refer to
Section 13.6.1 Editing /etc/openldap/slapd.conf for more information.

3. Start slapd with the command:
/sbin/service ldap start

After configuring LDAP, use chkconfig, ntsysv, or the Services Configuration Tool to con-
figure LDAP to start at boot time. For more information about configuring services, refer to the
chapter titled Controlling Access to Services in the Red Hat Enterprise Linux System Adminis-
tration Guide.

4. Add entries to an LDAP directory with ldapadd.

5. Use ldapsearch to determine if slapd is accessing the information correctly.

6. At this point, the LDAP directory should be functioning properly and can be configured with
LDAP-enabled applications.

13.6.1. Editing /etc/openldap/slapd.conf
To use the slapd LDAP server, modify its configuration file, /etc/openldap/slapd.conf, to
specify the correct domain and server.

The suffix line names the domain for which the LDAP server provides information and should be
changed from:

Chapter 13. Lightweight Directory Access Protocol (LDAP) 207

suffix "dc=your-domain,dc=com"

so that it reflects a fully qualified domain name. For example:

suffix "dc=example,dc=com"

The rootdn entry is the Distinguished Name (DN) for a user who is unrestricted by access controls
or administrative limit parameters set for operations on the LDAP directory. The rootdn user can be
thought of as the root user for the LDAP directory. In the configuration file, change the rootdn line
from its default value as in the following example:

rootdn "cn=root,dc=example,dc=com"

When populating an LDAP directory over a network, change the rootpw line — replacing the default
value with an encrypted password string. To create an encrypted password string, type the following
command:

slappasswd

When prompted, type and then re-type a password. The program prints the resulting encrypted pass-
word to the shell prompt.

Next, copy the newly created encrypted password into the /etc/openldap/slapd.conf on one of
the rootpw lines and remove the hash mark (#).

When finished, the line should look similar to the following example:

rootpw {SSHA}vv2y+i6V6esazrIv70xSSnNAJE18bb2u

Warning

LDAP passwords, including the rootpw directive specified in /etc/openldap/slapd.conf, are sent
over the network unencrypted , unless TLS encryption is enabled.

To enable TLS encryption, review the comments in /etc/openldap/slapd.conf and refer to the
man page for slapd.conf.

For added security, the rootpw directive should be commented out after populating the LDAP direc-
tory by preceding it with a hash mark (#).

When using the /usr/sbin/slapadd command line tool locally to populate the LDAP directory,
use of the rootpw directive is not necessary.

Important

Only the root user can use /usr/sbin/slapadd. However, the directory server runs as the ldap user.
Therefore, the directory server is unable to modify any files created by slapadd. To correct this issue,
after using slapadd, type the following command:

chown -R ldap /var/lib/ldap

208 Chapter 13. Lightweight Directory Access Protocol (LDAP)

13.7. Configuring a System to Authenticate Using OpenLDAP
This section provides a brief overview of how to configure OpenLDAP user authentication. Unless
you are an OpenLDAP expert, more documentation than is provided here is necessary. Refer to the
references provided in Section 13.9 Additional Resources for more information.

Install the Necessary LDAP Package

First, make sure that the appropriate packages are installed on both the LDAP server and the
LDAP client machines. The LDAP server needs the openldap-servers package.

The openldap, openldap-clients, and nss_ldap packages need to be installed on all LDAP
client machines.

Edit the Configuration Files

• On the server, edit the /etc/openldap/slapd.conf file on the LDAP
server to make sure it matches the specifics of the organization. Refer to
Section 13.6.1 Editing /etc/openldap/slapd.conf for instructions about editing
slapd.conf.

• On the client machines, both /etc/ldap.conf and /etc/openldap/ldap.conf need to
contain the proper server and search base information for the organization.

To do this, run the graphical Authentication Configuration Tool
(system-config-authentication) and select Enable LDAP Support under the User
Information tab.

It is also possible to edit these files by hand.

• On the client machines, the /etc/nsswitch.conf must be edited to use LDAP.

To do this, run the Authentication Configuration Tool
(system-config-authentication) and select Enable LDAP Support under the User
Information tab.

If editing /etc/nsswitch.conf by hand, add ldap to the appropriate lines.

For example:
passwd: files ldap
shadow: files ldap
group: files ldap

13.7.1. PAM and LDAP
To have standard PAM-enabled applications use LDAP for authentication, run the Authentication
Configuration Tool (system-config-authentication) and select Enable LDAP
Support under the the Authentication tab. For more about configuring PAM, refer to
Chapter 16 Pluggable Authentication Modules (PAM) and the PAM man pages.

13.7.2. Migrating Old Authentication Information to LDAP Format
The /usr/share/openldap/migration/ directory contains a set of shell and Perl scripts for mi-
grating authentication information into an LDAP format.

Chapter 13. Lightweight Directory Access Protocol (LDAP) 209

Note

Perl must be installed on the system to use these scripts.

First, modify the migrate_common.ph file so that it reflects the correct domain. The default DNS
domain should be changed from its default value to something like:

$DEFAULT_MAIL_DOMAIN = "example";

The default base should also be changed, to something like:

$DEFAULT_BASE =
"dc=example,dc=com";

The job of migrating a user database into a format that is LDAP readable falls to a group of migration
scripts installed in the same directory. Using Table 13-1, decide which script to run to migrate the user
database.

Run the appropriate script based on the existing name service.

The README and the migration-tools.txt files in the /usr/share/openldap/migration/
directory provide more details on how to migrate the information.

Existing name service Is LDAP
running?

Script to Use

/etc flat files yes migrate_all_online.sh

/etc flat files no migrate_all_offline.sh

NetInfo yes migrate_all_netinfo_online.sh

NetInfo no migrate_all_netinfo_offline.sh

NIS (YP) yes migrate_all_nis_online.sh

NIS (YP) no migrate_all_nis_offline.sh

Table 13-1. LDAP Migration Scripts

13.8. Migrating Directories from Earlier Releases
With Red Hat Enterprise Linux, OpenLDAP uses Sleepycat Software’s Berkeley DB system as its
on-disk storage format for directories. Earlier versions of OpenLDAP used GNU Database Manager
(gdbm). For this reason, before upgrading an LDAP implementation to Red Hat Enterprise Linux 4,
original LDAP data should first be exported before the upgrade, and then reimported afterwards. This
can be achieved by performing the following steps:

1. Before upgrading the operating system, run the command /usr/sbin/slapcat -l
ldif-output. This outputs an LDIF file called ldif-output containing the entries from the
LDAP directory.

2. Upgrade the operating system, being careful not to reformat the partition containing the LDIF
file.

210 Chapter 13. Lightweight Directory Access Protocol (LDAP)

3. Re-import the LDAP directory to the upgraded Berkeley DB format by executing the command
/usr/sbin/slapadd -l ldif-output.

13.9. Additional Resources
The following resources offer additional information on LDAP. It is highly recommended that you
review these, especially the OpenLDAP website and the LDAP HOWTO, before configuring LDAP
on your system(s).

13.9.1. Installed Documentation

• /usr/share/docs/openldap-<versionnumber>/ directory — Contains a general README
document and miscellaneous information.

• LDAP related man pages — There are a number of man pages for the various applications and
configuration files involved with LDAP. The following is a list of some of the more important man
pages.

Client Applications

• man ldapadd — Describes how to add entries to an LDAP directory.

• man ldapdelete — Describes how to delete entries within an LDAP directory.

• man ldapmodify — Describes how to modify entries within an LDAP directory.

• man ldapsearch — Describes how to search for entries within an LDAP directory.

• man ldappasswd — Describes how to set or change the password of an LDAP user.

Server Applications

• man slapd — Describes command line options for the LDAP server.

• man slurpd — Describes command line options for the LDAP replication server.

Administrative Applications

• man slapadd— Describes command line options used to add entries to a slapd database.

• man slapcat — Describes command line options used to generate an LDIF file from a
slapd database.

• man slapindex — Describes command line options used to regenerate an index based
upon the contents of a slapd database.

• man slappasswd — Describes command line options used to generate user passwords for
LDAP directories.

Chapter 13. Lightweight Directory Access Protocol (LDAP) 211

Configuration Files

• man ldap.conf — Describes the format and options available within the configuration
file for LDAP clients.

• man slapd.conf — Describes the format and options available within the configuration
file referenced by both the LDAP server applications (slapd and slurpd) and the LDAP
administrative tools (slapadd, slapcat, and slapindex).

13.9.2. Useful Websites

• http://www.openldap.org/ — Home of the OpenLDAP Project. This website contains a wealth of
information about configuring OpenLDAP as well as a future roadmap and version changes.

• http://www.redhat.com/mirrors/LDP/HOWTO/LDAP-HOWTO.html — A comprehensive,
relevant, and updated LDAP HOWTO.

• http://www.padl.com/ — Developers of nss_ldap and pam_ldap, among other useful LDAP
tools.

• http://www.kingsmountain.com/ldapRoadmap.shtml — Jeff Hodges’ LDAP Road Map contains
links to several useful FAQs and emerging news concerning the LDAP protocol.

• http://www.newarchitectmag.com/archives/2000/05/wilcox/ — A useful look at managing groups
in LDAP.

• http://www.ldapman.org/articles/ — Articles that offer a good introduction to LDAP, including
methods to design a directory tree and customizing directory structures.

13.9.3. Related Books

• OpenLDAP by Example by John Terpstra and Benjamin Coles; Prentice Hall.

• Implementing LDAP by Mark Wilcox; Wrox Press, Inc.

• Understanding and Deploying LDAP Directory Services by Tim Howes et al.; Macmillan Technical
Publishing.

212 Chapter 13. Lightweight Directory Access Protocol (LDAP)

Chapter 14.
Samba

Samba is an open source implementation of the Server Message Block (SMB) protocol. It allows the
networking of Microsoft Windows®, Linux, UNIX, and other operating systems together, enabling
access to Windows-based file and printer shares. Samba’s use of SMB allows it to appear as a Windows
server to Windows clients.

14.1. Introduction to Samba
The third major release of Samba, version 3.0.0, introduced numerous improvements from prior ver-
sions, including:

• The ability to join an Active Directory domain by means of LDAP and Kerberos

• Built in Unicode support for internationalization

• Support for Microsoft Windows XP Professional client connections to Samba servers without need-
ing local registry hacking

• Two new documents developed by the Samba.org team, which include a 400+ page reference man-
ual, and a 300+ page implementation and integration manual. For more information about these
published titles, refer to Section 14.9.3 Related Books.

14.1.1. Samba Features
Samba is a powerful and versatile server application. Even seasoned system administrators must know
its abilities and limitations before attempting installation and configuration.

What Samba can do:

• Serve directory trees and printers to Linux, UNIX, and Windows clients

• Assist in network browsing (with or without NetBIOS)

• Authenticate Windows domain logins

• Provide Windows Internet Name Service (WINS) name server resolution

• Act as a Windows NT®-style Primary Domain Controller (PDC)

• Act as a Backup Domain Controller (BDC) for a Samba-based PDC

• Act as an Active Directory domain member server

• Join a Windows NT/2000/2003 PDC

What Samba cannot do:

• Act as a BDC for a Windows PDC (and vice versa)

• Act as an Active Directory domain controller

214 Chapter 14. Samba

14.2. Samba Daemons and Related Services
The following is a brief introduction to the individual Samba daemons and services, as well as details
on how to start and stop them.

14.2.1. Daemon Overview
Samba is comprised of three daemons (smbd, nmbd, and winbindd). Two services (smb and
windbind) control how the daemons are started, stopped, and other service-related features. Each
daemon is listed in detail, as well as which specific service has control over it.

14.2.1.1. The smbd daemon
The smbd server daemon provides file sharing and printing services to Windows clients. In addition,
it is responsible for user authentication, resource locking, and data sharing through the SMB protocol.
The default ports on which the server listens for SMB traffic are TCP ports 139 and 445.

The smbd daemon is controlled by the smb service.

14.2.1.2. The nmbd daemon
The nmbd server daemon understands and replies to NetBIOS name service requests such as those pro-
duced by SMB/CIFS in Windows-based systems. These systems include Windows 95/98/ME, Win-
dows NT, Windows 2000, Windows XP, and LanManager clients. It also participates in the browsing
protocols that make up the Windows Network Neighborhood view. The default port that the server
listens to for NMB traffic is UDP port 137.

The nmbd daemon is controlled by the smb service.

14.2.1.3. The winbindd daemon
The winbind service resolves user and group information on a Windows NT server and makes it
understandable by UNIX platforms. This is achieved by using Microsoft RPC calls, Pluggable Au-
thentication Modules (PAM), and the Name Service Switch (NSS). This allows Windows NT domain
users to appear and operate as UNIX users on a UNIX machine. Though bundled with the Samba
distribution, the winbind service is controlled separately from the smb service.

The winbindd daemon is controlled by the winbind service and does not require the smb service to
be started in order to operate. Because winbind is a client-side service used to connect to Windows
NT based servers, further discussion of winbind is beyond the scope of this manual.

14.2.2. Starting and Stopping Samba
To start a Samba server, type the following command in a shell prompt while logged in as root:

/sbin/service smb start

Important

To set up a domain member server, you must first join the domain or Active Directory using the net
join command before starting the smb service.

Chapter 14. Samba 215

To stop the server, type the following command in a shell prompt while logged in as root:

/sbin/service smb stop

The restart option is a quick way of stopping and then starting Samba. This is the most reliable
way to make configuration changes take effect after editing the configuration file for Samba. Note that
the restart option starts the daemon even if it was not running originally.

To restart the server, type the following command in a shell prompt while logged in as root:

/sbin/service smb restart

The condrestart (conditional restart) option only starts smb on the condition that it is currently
running. This option is useful for scripts, because it does not start the daemon if it is not running.

Note

When the smb.conf file is changed, Samba automatically reloads it after a few minutes. Issuing a
manual restart or reload is just as affective.

To conditionally restart the server, type the following command as root:

/sbin/service smb condrestart

A manual reload of the smb.conf file can be useful in case of a failed automatic reload by the smb
service. To ensure that the Samba server configuration file is reloaded without restarting the service,
type the following command as root:

/sbin/service smb reload

By default, the smb service does not start automatically at boot time. To configure Samba to start
at boot time, use an initscript utility, such as /sbin/chkconfig, /sbin/ntsysv, or the Services
Configuration Tool program. Refer to the chapter titled Controlling Access to Services in the Red
Hat Enterprise Linux System Administration Guide for more information regarding these tools.

14.3. Samba Server Types and the smb.conf File
Samba configuration is straightforward. All modifications to Samba are done in the
/etc/samba/smb.conf configuration file. Although the default smb.conf file is well documented,
it does not address complex topics such as LDAP, Active Directory, and the numerous domain
controller implementations.

The following sections describe the different ways a Samba server can be configured. Keep in mind
your needs and the changes required to the smb.conf file for a successful configuration.

14.3.1. Stand-alone Server
A stand-alone server can be a workgroup server or a member of a workgroup environment. A stand-
alone server is not a domain controller and does not participate in a domain in any way. The fol-
lowing examples include several anonymous share-level security configurations and one user-level
security configuration. For more information on share-level and user-level security modes, refer to
Section 14.4 Samba Security Modes.

216 Chapter 14. Samba

14.3.1.1. Anonymous Read-Only
The following smb.conf file shows a sample configuration needed to implement anonymous read-
only file sharing. The security = share parameter makes a share anonymous. Note, security levels
for a single Samba server cannot be mixed. The security directive is a global Samba parameter
located in the [global] configuration section of the smb.conf file.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share

[data]
comment = Documentation Samba Server
path = /export
read only = Yes
guest only = Yes

14.3.1.2. Anonymous Read/Write
The following smb.conf file shows a sample configuration needed to implement anonymous
read/write file sharing. To enable anonymous read/write file sharing, set the read only directive to
no. The force user and force group directives are also added to enforce the ownership of any
newly placed files specified in the share.

Note

Although having an anonymous read/write server is possible, it is not recommended. Any files placed
in the share space, regardless of user, are assigned the user/group combination as specified by a
generic user (force user) and group (force group) in the smb.conf file.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share

[data]
comment = Data
path = /export
force user = docsbot
force group = users
read only = No
guest ok = Yes

14.3.1.3. Anonymous Print Server
The following smb.conf file shows a sample configuration needed to implement an anonymous print
server. Setting browseable to no as shown does not list the printer in Windows Network Neighbor-
hood. Although hidden from browsing, configuring the printer explicitly is possible. By connecting
to DOCS_SRV using NetBIOS, the client can have access to the printer if the client is also part of the
DOCS workgroup. It is also assumed that the client has the correct local printer driver installed, as the

Chapter 14. Samba 217

use client driver directive is set to Yes. In this case, the Samba server has no responsibility for
sharing printer drivers to the client.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = share
printcap name = cups
disable spools= Yes
show add printer wizard = No
printing = cups

[printers]
comment = All Printers
path = /var/spool/samba
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = Yes

14.3.1.4. Secure Read/Write File and Print Server
The following smb.conf file shows a sample configuration needed to implement a secure read/write
print server. Setting the security directive to user forces Samba to authenticate client connections.
Notice the [homes] share does not have a force user or force group directive as the [public]
share does. The [homes] share uses the authenticated user details for any files created as opposed to
the force user and force group in [public].

[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = user
printcap name = cups
disable spools = Yes
show add printer wizard = No
printing = cups

[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No

[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes

[printers]
comment = All Printers
path = /var/spool/samba
printer admin = john, ed, @admins
create mask = 0600
guest ok = Yes

218 Chapter 14. Samba

printable = Yes
use client driver = Yes
browseable = Yes

14.3.2. Domain Member Server
A domain member, while similar to a stand-alone server, is logged into a domain controller (either
Windows or Samba) and is subject to the domain’s security rules. An example of a domain member
server would be a departmental server running Samba that has a machine account on the Primary
Domain Controller (PDC). All of the department’s clients still authenticate with the PDC, and desktop
profiles and all network policy files are included. The difference is that the departmental server has
the ability to control printer and network shares.

14.3.2.1. Active Directory Domain Member Server
The following smb.conf file shows a sample configuration needed to implement an Active Directory
domain member server. In this example, Samba authenticates users for services being run locally
but is also a client of the Active Directory. Ensure that your kerberos realm parameter is shown in
all caps (for example realm = EXAMPLE.COM). Since Windows 2000/2003 requires Kerberos for
Active Directory authentication, the realm directive is required. If Active Directory and Kerberos are
running on different servers, the password server directive may be required to help the distinction.

[global]
realm = EXAMPLE.COM
security = ADS
encrypt passwords = yes
Optional. Use only if Samba cannot determine the Kerberos server automatically.
password server = kerberos.example.com

In order to join a member server to an Active Directory domain, the following steps must be com-
pleted:

• Configuration of the smb.conf file on the member server

• Configuration of Kerberos, including the /etc/krb5.conf file, on the member server

• Creation of the machine account on the Active Directory domain server

• Association of the member server to the Active Directory domain

To create the machine account and join the Windows 2000/2003 Active Directory, Kerberos must
first be initialized for the member server wishing to join the Active Directory domain. To create an
administrative Kerberos ticket, type the following command as root on the member server:

root# kinit administrator@EXAMPLE.COM

The kinit command is a Kerberos initialization script that references the Active Directory adminis-
trator account and Kerberos realm. Since Active Directory requires Kerberos tickets, kinit obtains
and caches a Kerberos ticket-granting ticket for client/server authentication. For more information on
Kerberos, the /etc/krb5.conf file, and the kinit command, refer to Chapter 19 Kerberos.

To join an Active Directory server (windows1.example.com), type the following command as root on
the member server:

root# net ads join -S windows1.example.com -U administrator%password

Chapter 14. Samba 219

Since the machine windows1 was automatically found in the corresponding Kerberos realm (the
kinit command succeeded), the net command connects to the Active Directory server using its
required administrator account and password. This creates the appropriate machine account on the
Active Directory and grants permissions to the Samba domain member server to join the domain.

Note

Since security = ads and not security = user is used, a local password backend such as
smbpasswd is not needed. Older clients that do not support security = ads are authenticated as if
security = domain had been set. This change does not affect functionality and allows local users
not previously in the domain.

14.3.2.2. Windows NT4-based Domain Member Server
The following smb.conf file shows a sample configuration needed to implement a Windows NT4-
based domain member server. Becoming a member server of an NT4-based domain is similar to
connecting to an Active Directory. The main difference is NT4-based domains do not use Kerberos in
their authentication method, making the smb.conf file simpler. In this instance, the Samba member
server serves as a pass through to the NT4-based domain server.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
security = domain

[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No

[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes

Having Samba as a domain member server can be useful in many situations. There are times where
the Samba server can have other uses besides file and printer sharing. It may be beneficial to make
Samba a domain member server in instances where Linux-only applications are required for use in
the domain environment. Administrators appreciate keeping track of all machines in the domain, even
if not Windows-based. In the event the Windows-based server hardware is deprecated, it is quite easy
to modify the smb.conf file to convert the server to a Samba-based PDC. If Windows NT-based
servers are upgraded to Windows 2000/2003, the smb.conf file is easily modifiable to incorporate
the infrastructure change to Active Directory if needed.

220 Chapter 14. Samba

Important

After configuring the smb.conf file, join the domain before starting Samba by typing the following
command as root:

root# net rpc join -U administrator%password

Note that the -S option, which specifies the domain server hostname, does not need to be stated in
the net rpc join command. Samba uses the hostname specified by the workgroup directive in the
smb.conf file instead of it being stated explicitly.

14.3.3. Domain Controller
A domain controller in Windows NT is functionally similar to a Network Information Service (NIS)
server in a Linux environment. Domain controllers and NIS servers both host user/group information
databases as well as related services. Domain controllers are mainly used for security, including the
authentication of users accessing domain resources. The service that maintains the user/group database
integrity is called the Security Account Manager (SAM). The SAM database is stored differently
between Windows and Linux Samba-based systems, therefore SAM replication cannot be achieved
and platforms cannot be mixed in a PDC/BDC environment.

In a Samba environment, there can be only one PDC and zero or more BDCs.

Important

Samba cannot exist in a mixed Samba/Windows domain controller environment (Samba cannot be a
BDC of a Windows PDC or vice versa). Alternatively, Samba PDCs and BDCs can coexist.

14.3.3.1. Primary Domain Controller (PDC) using tdbsam

The simplest and most common implementation of a Samba PDC uses the tdbsam password database
backend. Planned to replace the aging smbpasswd backend, tdbsam has numerous improvements
that are explained in more detail in Section 14.5 Samba Account Information Databases. The passdb
backend directive controls which backend is to be used for the PDC.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
passdb backend = tdbsam
security = user
add user script = /usr/sbin/useradd -m %u
delete user script = /usr/sbin/userdel -r %u
add group script = /usr/sbin/groupadd %g
delete group script = /usr/sbin/groupdel %g
add user to group script = /usr/sbin/usermod -G %g %u
add machine script = \
/usr/sbin/useradd -s /bin/false -d /dev/null \
-g machines %u
The following specifies the default logon script
Per user logon scripts can be specified in the user
account using pdbedit

Chapter 14. Samba 221

logon script = logon.bat
This sets the default profile path.
Set per user paths with pdbedit
logon path = \\%L\Profiles\%U
logon drive = H:
logon home = \\%L\%U
domain logons = Yes
os level = 35
preferred master = Yes
domain master = Yes
idmap uid = 15000-20000
idmap gid = 15000-20000

[homes]
comment = Home Directories
valid users = %S
read only = No
browseable = No
writable = Yes

[public]
comment = Data
path = /export
force user = docsbot
force group = users
guest ok = Yes

[netlogon]
comment = Network Logon Service
path = /var/lib/samba/netlogon/scripts
admin users = ed, john, sam
guest ok = No
browseable = No
writable = No

For profiles to work, create a user directory under the
path shown. mkdir -p /var/lib/samba/profiles/john
[Profiles]
comment = Roaming Profile Share
path = /var/lib/samba/profiles
read only = No
browseable = No
guest ok = Yes
profile acls = Yes

Other resource shares
...
...

Note

If you need more than one domain controller or have more than 250 users, do not use a tdbsam
authentication backend. LDAP is recommended in these cases.

222 Chapter 14. Samba

14.3.3.2. Primary Domain Controller (PDC) using LDAP
The most powerful and versatile implementation of a Samba PDC is its ability to have an LDAP
password backend. LDAP is highly scalable. LDAP database servers can be used for redundancy and
fail-over by replicating to a Samba BDC. Groups of LDAP PDCs and BDCs with load balancing are
ideal for an enterprise environment. On the other hand, LDAP configurations are inherently complex
to setup and maintain. If SSL is to be incorporated with LDAP, the complexity instantly multiplies.
Even so, with careful and precise planning, LDAP is an ideal solution for enterprise environments.

Note the passdb backend directive as well as specific LDAP suffix specifications. Although the
Samba configuration for LDAP is straightforward, the installation of OpenLDAP is not trivial. LDAP
should be installed and configured before any Samba configuration. Also notice that Samba and LDAP
do not need to be on the same server to function. It is highly recommended to separate the two in an
enterprise environment.

[global]
workgroup = DOCS
netbios name = DOCS_SRV
passdb backend = ldapsam:ldap://ldap.example.com
username map = /etc/samba/smbusers
security = user
add user script = /usr/sbin/useradd -m %u
delete user script = /usr/sbin/userdel -r %u
add group script = /usr/sbin/groupadd %g
delete group script = /usr/sbin/groupdel %g
add user to group script = /usr/sbin/usermod -G %g %u
add machine script = \
/usr/sbin/useradd -s /bin/false -d /dev/null \
-g machines %u
The following specifies the default logon script
Per user logon scripts can be specified in the
user account using pdbedit
logon script = scripts\logon.bat
This sets the default profile path.
Set per user paths with pdbedit
logon path = \\%L\Profiles\%U
logon drive = H:
logon home = \\%L\%U
domain logons = Yes
os level = 35
preferred master = Yes
domain master = Yes
ldap suffix = dc=example,dc=com
ldap machine suffix = ou=People
ldap user suffix = ou=People
ldap group suffix = ou=Group
ldap idmap suffix = ou=People
ldap admin dn = cn=Manager
ldap ssl = no
ldap passwd sync = yes
idmap uid = 15000-20000
idmap gid = 15000-20000
...

Other resource shares
...
...

Chapter 14. Samba 223

Note

Implementing LDAP in this smb.conf file assumes that a working LDAP server has been successfully
installed on ldap.example.com.

14.3.3.3. Backup Domain Controller (BDC) using LDAP
A BDC is an integral part of any enterprise Samba/LDAP solution. The smb.conf files between the
PDC and BDC are virtually identical except for the domain master directive. Make sure the PDC
has a value of Yes and the BDC has a value of No. If you have multiple BDCs for a PDC, the os
level directive is useful in setting the BDC election priority. The higher the value, the higher the
server priority for connecting clients.

Note

A BDC can either use the LDAP database of the PDC or have its own LDAP database. This example
uses the LDAP database of the PDC as seen in the passdb backend directive.

[global] workgroup = DOCS
netbios name = DOCS_SRV2
passdb backend = ldapsam:ldap://ldap.example.com
username map = /etc/samba/smbusers
security = user
add user script = /usr/sbin/useradd -m %u
delete user script = /usr/sbin/userdel -r %u
add group script = /usr/sbin/groupadd %g
delete group script = /usr/sbin/groupdel %g
add user to group script = /usr/sbin/usermod -G %g %u
add machine script = \
/usr/sbin/useradd -s /bin/false -d /dev/null \
-g machines %u
The following specifies the default logon script
Per user logon scripts can be specified in the
user account using pdbedit
logon script = scripts\logon.bat
This sets the default profile path.
Set per user paths with pdbedit
logon path = \\%L\Profiles\%U
logon drive = H:
logon home = \\%L\%U
domain logons = Yes
os level = 35
preferred master = Yes
domain master = No
ldap suffix = dc=example,dc=com
ldap machine suffix = ou=People
ldap user suffix = ou=People
ldap group suffix = ou=Group
ldap idmap suffix = ou=People
ldap admin dn = cn=Manager
ldap ssl = no
ldap passwd sync = yes

224 Chapter 14. Samba

idmap uid = 15000-20000
idmap gid = 15000-20000
...

Other resource shares
...
...

14.3.3.4. Primary Domain Controller (PDC) with Active Directory
Although it is possible for Samba to be a member of an Active Directory, it is not possible for Samba
to operate as an Active Directory domain controller.

14.4. Samba Security Modes
There are only two types of security modes for Samba, share-level and user-level, which are col-
lectively known as security levels. Share-level security can only be implemented in one way, while
user-level security can be implemented in one of four different ways. The different ways of imple-
menting a security level are called security modes.

14.4.1. User-Level Security
User-level security is the default setting for Samba. Even if the security = user directive is not
listed in the smb.conf file, it is used by Samba. If the server accepts the client’s username/password,
the client can then mount multiple shares without specifying a password for each instance. Samba can
also accept session-based username/password requests. The client maintains multiple authentication
contexts by using a unique UID for each logon.

In smb.conf, the security = user directive that sets user-level security is:

[GLOBAL]
...
security = user
...

14.4.2. Share-Level Security
With share-level security, the server accepts only a password without an explicit username from the
client. The server expects a password for each share, independent of the username. There have been
recent reports that Microsoft Windows clients have compatibility issues with share-level security
servers. Samba developers strongly discourage use of share-level security.

In smb.conf, the security = share directive that sets share-level security is:

[GLOBAL]
...
security = share
...

Chapter 14. Samba 225

14.4.3. Domain Security Mode (User-Level Security)
In domain security mode, the Samba server has a machine account (domain security trust account) and
causes all authentication requests to be passed through to the domain controllers. The Samba server is
made into a domain member server by using the following directives in smb.conf:

[GLOBAL]
...
security = domain
workgroup = MARKETING
...

14.4.4. Active Directory Security Mode (User-Level Security)
If you have an Active Directory environment, it is possible to join the domain as a native Active Direc-
tory member. Even if a security policy restricts the use of NT-compatible authentication protocols, the
Samba server can join an ADS using Kerberos. Samba in Active Directory member mode can accept
Kerberos tickets.

In smb.conf, the following directives make Samba an Active Directory member server:

[GLOBAL]
...
security = ADS
realm = EXAMPLE.COM
password server = kerberos.example.com
...

14.4.5. Server Security Mode (User-Level Security)
Server security mode was previously used when Samba was not capable of acting as a domain member
server.

Note

It is highly recommended to not use this mode since there are numerous security drawbacks.

In smb.conf, the following directives enable Samba to operate in server security mode:

[GLOBAL]
...
encrypt passwords = Yes
security = server
password server = "NetBIOS_of_Domain_Controller"
...

226 Chapter 14. Samba

14.5. Samba Account Information Databases
The latest release of Samba offers many new features including new password database backends not
previously available. Samba version 3.0.0 fully supports all databases used in previous versions of
Samba. However, although supported, many backends may not be suitable for production use.

14.5.1. Backward Compatible Backends

Plain Text

Plain text backends are nothing more than the /etc/passwd type backends. With a plain text
backend, all usernames and passwords are sent unencrypted between the client and the Samba
server. This method is very insecure and is not recommended for use by any means. It is possible
that different Windows clients connecting to the Samba server with plain text passwords cannot
support such an authentication method.

smbpasswd

A popular backend used in previous Samba packages, the smbpasswd backend utilizes a plain
ASCII text layout that includes the MS Windows LanMan and NT account, and encrypted pass-
word information. The smbpasswd backend lacks the storage of the Windows NT/2000/2003
SAM extended controls. The smbpasswd backend is not recommended because it does not scale
well or hold any Windows information, such as RIDs for NT-based groups. The tdbsam backend
solves these issues for use in a smaller database (250 users), but is still not an enterprise-class
solution.

Warning

This type of backend may be deprecated for future releases and replaced by the tdbsam back-
end, which does include the SAM extended controls.

ldapsam_compat

The ldapsam_compat backend allows continued OpenLDAP support for use with upgraded
versions of Samba. This option is ideal for migration, but is not required. This tool will eventually
be deprecated.

14.5.2. New Backends

tdbsam

The tdbsam backend provides an ideal database backend for local servers, servers that do not
need built-in database replication, and servers that do not require the scalability or complexity of
LDAP. The tdbsam backend includes all of the smbpasswd database information as well as the
previously-excluded SAM information. The inclusion of the extended SAM data allows Samba
to implement the same account and system access controls as seen with Windows NT/2000/2003-
based systems.

The tdbsam backend is recommended for 250 users at most. Larger organizations should require
Active Directory or LDAP integration due to scalability and possible network infrastructure con-
cerns.

ldapsam

The ldapsam backend provides an optimal distributed account installation method for Samba.
LDAP is optimal because of its ability to replicate its database to any number of servers using
the OpenLDAP slurpd daemon. LDAP databases are light-weight and scalable, perfect for most

Chapter 14. Samba 227

organizations, especially large enterprises. LDAP is definitely the "wave of the future" with re-
gards to Samba. Improvements to LDAP are constantly being added into Samba such as easing
installation and configuration issues.

mysqlsam

The mysqlsam backend uses a MySQL-based database backend. This is useful for sites that
already implement MySQL.

xmlsam

The xmlsam backend uses account and password data that are stored in an XML formatted file.
This method can be useful for migration of different backend databases or backups.

14.6. Samba Network Browsing
Network browsing is a concept that enables Windows and Samba servers to appear in the Windows
Network Neighborhood. Inside the Network Neighborhood, icons are represented as servers and if
opened, the server’s shares and printers that are available are displayed.

Network browsing capabilities require NetBIOS over TCP/IP. NetBIOS-based networking uses broad-
cast (UDP) messaging to accomplish browse list management. Without NetBIOS and WINS as the
primary method for TCP/IP hostname resolution, other methods such as static files (/etc/hosts) or
DNS, must be used.

A domain master browser collates the browse lists from local master browsers on all subnets so that
browsing can occur between workgroups and subnets. Also, the domain master browser should prefer-
ably be the local master browser for its own subnet.

14.6.1. Workgroup Browsing
For each workgroup, there must be one and only one domain master browser. You can have one local
master browser per subnet without a domain master browser, but this results in isolated workgroups
unable to see each other. To resolve NetBIOS names in cross-subnet workgroups, WINS is required.

Note

The Domain Master Browser can be the same machine as the WINS server.

There can only be one domain master browser per workgroup name. Here is an example of the
smb.conf file in which the Samba server is a domain master browser:

[global]
domain master = Yes
local master = Yes
preferred master = Yes
os level = 35

Next is an example of the smb.conf file in which the Samba server is a local master browser:

[global]
domain master = no
local master = Yes

228 Chapter 14. Samba

preferred master = Yes
os level = 35

The os level directive operates as a priority system for master browsers in a subnet. Setting different
values ensures master browsers do not conflict with each other for authority.

Tip

Lowering the os level directive results in Samba conflicting with other master browsers on the same
subnet. The higher the value, the higher the priority. The highest a Windows server can operate at is
32. This is a good way of tuning multiple local master browsers.

There are instances when a Windows NT machine on the subnet could be the local master browser.
The following is an example smb.conf configuration in which the Samba server is not serving in any
browsing capacity:

[global]
domain master = no
local master = no
preferred master = no
os level = 0

Warning

Having multiple local master browsers result in each server competing for browsing election requests.
Make sure there is only one local master browser per subnet.

14.6.2. Domain Browsing
By default, a Windows NT PDC for a domain is also the domain master browser for that domain. A
Samba server must be set up as a domain master server in this type of situation. Network browsing
may fail if the Samba server is running WINS along with other domain controllers in operation.

For subnets that do not include the Windows NT PDC, a Samba server can be implemented as a local
master browser. Configuring the smb.conf for a local master browser (or no browsing at all) in a
domain controller environment is the same as workgroup configuration.

14.6.3. WINS (Windows Internetworking Name Server)
Either a Samba server or a Windows NT server can function as a WINS server. When a WINS server
is used with NetBIOS enabled, UDP unicasts can be routed which allows name resolution across
networks. Without a WINS server, the UDP broadcast is limited to the local subnet and therefore
cannot be routed to other subnets, workgroups, or domains. If WINS replication is necessary, do not
use Samba as your primary WINS server, as Samba does not currently support WINS replication.

In a mixed NT/2000/2003 server and Samba environment, it is recommended that you use the Mi-
crosoft WINS capabilities. In a Samba-only environment, it is recommended that you use only one
Samba server for WINS.

The following is an example of the smb.conf file in which the Samba server is serving as a WINS
server:

Chapter 14. Samba 229

[global]
wins support = Yes

Tip

All servers (including Samba) should connect to a WINS server to resolve NetBIOS names. Without
WINS, browsing only occurs on the local subnet. Furthermore, even if a domain-wide list is somehow
obtained, hosts are not resolvable for the client without WINS.

14.7. Samba with CUPS Printing Support
Samba allows client machines to share printers connected to the Samba server, as well as send Linux
documents to Windows printer shares. Although there are other printing systems that function with
Red Hat Enterprise Linux, CUPS (Common UNIX Print System) is the recommended printing system
due to its close integration with Samba.

14.7.1. Simple smb.conf Settings
The following example shows a very basic smb.conf configuration for CUPS support:

[global]
load printers = Yes
printing = cups
printcap name = cups

[printers]
comment = All Printers
path = /var/spool/samba/print
printer = IBMInfoP
browseable = No
public = Yes
guest ok = Yes
writable = No
printable = Yes
printer admin = @ntadmins

[print$]
comment = Printer Drivers Share
path = /var/lib/samba/drivers
write list = ed, john
printer admin = ed, john

More complicated printing configurations are possible. To add additional security and privacy for
printing confidential documents, users can have their own print spooler not located in a public path. If
a job fails, other users would not have access to the file.

The print$ share contains printer drivers for clients to access if not available locally. The print$
share is optional and may not be required depending on the organization.

Setting browseable to Yes enables the printer to be viewed in the Windows Network Neighborhood,
provided the Samba server is set up correctly in the domain/workgroup.

230 Chapter 14. Samba

14.8. Samba Distribution Programs

14.8.1. findsmb
findsmb <subnet_broadcast_address>

The findsmb program is a Perl script which reports information about SMB-aware systems on a
specific subnet. If no subnet is specified the local subnet is used. Items displayed include IP address,
NetBIOS name, workgroup or domain name, operating system, and version.

The following example shows the output of executing findsmb as any valid user on a system:

findsmb

IP ADDR NETBIOS NAME WORKGROUP/OS/VERSION
--
10.1.59.25 VERVE [MYGROUP] [Unix] [Samba 3.0.0-15]
10.1.59.26 STATION22 [MYGROUP] [Unix] [Samba 3.0.2-7.FC1]
10.1.56.45 TREK +[WORKGROUP] [Windows 5.0] [Windows 2000 LAN Manager]
10.1.57.94 PIXEL [MYGROUP] [Unix] [Samba 3.0.0-15]
10.1.57.137 MOBILE001 [WORKGROUP] [Windows 5.0] [Windows 2000 LAN Manager]
10.1.57.141 JAWS +[KWIKIMART] [Unix] [Samba 2.2.7a-security-rollup-fix]
10.1.56.159 FRED +[MYGROUP] [Unix] [Samba 3.0.0-14.3E]
10.1.59.192 LEGION *[MYGROUP] [Unix] [Samba 2.2.7-security-rollup-fix]
10.1.56.205 NANCYN +[MYGROUP] [Unix] [Samba 2.2.7a-security-rollup-fix]

14.8.2. make_smbcodepage
make_smbcodepage <c|d> <codepage_number> <inputfile> <outputfile>

The make_smbcodepage program compiles a binary codepage file from a text-format definition. The
reverse is also allowed by decompiling a binary codepage file to a text-format definition. This obsolete
program is part of the internationalization features of previous versions of Samba which are included
by default with the current version of Samba.

14.8.3. make_unicodemap
make_unicodemap <codepage_number> <inputfile> <outputfile>

The make_unicodemap program compiles binary Unicode files from text files so Samba can dis-
play non-ASCII charactersets. This obsolete program was part of the internationalization features of
previous versions of Samba which are now included with the current release of Samba.

14.8.4. net
net <protocol> <function> <misc_options> <target_options>

The net utility is similar to the net utility used for Windows and MS-DOS. The first argument
is used to specify the protocol to use when executing a command. The <protocol> option can be
ads, rap, or rpc for specifying the type of server connection. Active Directory uses ads, Win9x/NT3
uses rap, and Windows NT4/2000/2003 uses rpc. If the protocol is omitted, net automatically tries
to determine it.

The following example displays a list the available shares for a host named wakko:

Chapter 14. Samba 231

net -l share -S wakko
Password:

Enumerating shared resources (exports) on remote server:

Share name Type Description
---------- ---- -----------
data Disk Wakko data share
tmp Disk Wakko tmp share
IPC$ IPC IPC Service (Samba Server)
ADMIN$ IPC IPC Service (Samba Server)

The following example displays a list of Samba users for a host named wakko:

net -l user -S wakko
root password:

User name Comment

andriusb Documentation
joe Marketing
lisa Sales

14.8.5. nmblookup
nmblookup <options> <netbios_name>

The nmblookup program resolves NetBIOS names into IP addresses. The program broadcasts its
query on the local subnet until the target machine replies.

Here is an example:

nmblookup trek
querying trek on 10.1.59.255
10.1.56.45 trek<00>

14.8.6. pdbedit
pdbedit <options>

The pdbedit program manages accounts located in the SAM database. All backends are supported
including smbpasswd, LDAP, NIS+, and the tdb database library.

The following are examples of adding, deleting, and listing users:

pdbedit -a kristin
new password:
retype new password:
Unix username: kristin
NT username:
Account Flags: [U]
User SID: S-1-5-21-1210235352-3804200048-1474496110-2012
Primary Group SID: S-1-5-21-1210235352-3804200048-1474496110-2077
Full Name:
Home Directory: \\wakko\kristin
HomeDir Drive:

232 Chapter 14. Samba

Logon Script:
Profile Path: \\wakko\kristin\profile
Domain: WAKKO
Account desc:
Workstations:
Munged dial:
Logon time: 0
Logoff time: Mon, 18 Jan 2038 22:14:07 GMT
Kickoff time: Mon, 18 Jan 2038 22:14:07 GMT
Password last set: Thu, 29 Jan 2004 08:29:28 GMT
Password can change: Thu, 29 Jan 2004 08:29:28 GMT
Password must change: Mon, 18 Jan 2038 22:14:07 GMT

pdbedit -v -L kristin
Unix username: kristin
NT username:
Account Flags: [U]
User SID: S-1-5-21-1210235352-3804200048-1474496110-2012
Primary Group SID: S-1-5-21-1210235352-3804200048-1474496110-2077
Full Name:
Home Directory: \\wakko\kristin
HomeDir Drive:
Logon Script:
Profile Path: \\wakko\kristin\profile
Domain: WAKKO
Account desc:
Workstations:
Munged dial:
Logon time: 0
Logoff time: Mon, 18 Jan 2038 22:14:07 GMT
Kickoff time: Mon, 18 Jan 2038 22:14:07 GMT
Password last set: Thu, 29 Jan 2004 08:29:28 GMT
Password can change: Thu, 29 Jan 2004 08:29:28 GMT
Password must change: Mon, 18 Jan 2038 22:14:07 GMT

pdbedit -L
andriusb:505:
joe:503:
lisa:504:
kristin:506:

pdbedit -x joe

pdbedit -L
andriusb:505:
lisa:504:
kristin:506:

14.8.7. rpcclient
rpcclient <server> <options>

The rpcclient program issues administrative commands using Microsoft RPCs, which provide ac-
cess to the Windows administration graphical user interfaces (GUIs) for systems management. This
is most often used by advanced users that understand the full complexity of Microsoft RPCs.

Chapter 14. Samba 233

14.8.8. smbcacls
smbcacls <//server/share> <filename> <options>

The smbcacls program modifies Windows ACLs on files and directories shared by the Samba server.

14.8.9. smbclient
smbclient <//server/share> <password> <options>

The smbclient program is a versatile UNIX client which provides functionality similar to ftp.

14.8.10. smbcontrol
smbcontrol -i <options>

smbcontrol <options> <destination> <messagetype> <parameters>

The smbcontrol program sends control messages to running smbd or nmbd daemons. Executing
smbcontrol -i runs commands interactively until a blank line or a ’q’ is entered.

14.8.11. smbgroupedit
smbgroupedit <options>

The smbgroupedit program maps between Linux groups and Windows groups. It also allows a
Linux group to be a domain group.

14.8.12. smbmount
smbmount <//server/share> <mount_point> <-o options>

The smbmount program uses the low-level smbmnt program to mount an smbfs file system (Samba
share). The mount -t smbfs <//server/share> <mount_point> <-o options>

command also works.

For example:

smbmount //wakko/html /mnt/html -o username=kristin
Password: <password>

[root@yakko /]# ls -l /mnt/html
total 0
-rwxr-xr-x 1 root root 0 Jan 29 08:09 index.html

14.8.13. smbpasswd
smbpasswd <options> <username> <password>

The smbpasswd program manages encrypted passwords. This program can be run by a superuser to
change any user’s password as well as by an ordinary user to change their own Samba password.

234 Chapter 14. Samba

14.8.14. smbspool
smbspool <job> <user> <title> <copies> <options> <filename>

The smbspool program is a CUPS-compatible printing interface to Samba. Although designed for
use with CUPS printers, smbspool can work with non-CUPS printers as well.

14.8.15. smbstatus
smbstatus <options>

The smbstatus program displays the status of current connections to a Samba server.

14.8.16. smbtar
smbtar <options>

The smbtar program performs backup and restores of Windows-based share files and directories to a
local tape archive. Though similar to the tar command, the two are not compatible.

14.8.17. testparm
testparm <options> <filename> <hostname IP_address>

The testparm program checks the syntax of the smb.conf file. If your smb.conf file is in the
default location (/etc/samba/smb.conf) you do not need to specify the location. Specifying the
hostname and IP address to the testparm program verifies that the hosts.allow and host.deny
files are configured correctly. The testparm program also displays a summary of your smb.conf
file and the server’s role (stand-alone, domain, etc.) after testing. This is convenient when debugging
as it excludes comments and concisely presents information for experienced administrators to read.

For example:

testparm
Load smb config files from /etc/samba/smb.conf
Processing section "[homes]"
Processing section "[printers]"
Processing section "[tmp]"
Processing section "[html]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions
<enter>

Global parameters
[global]

workgroup = MYGROUP
server string = Samba Server
security = SHARE
log file = /var/log/samba/%m.log
max log size = 50
socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
dns proxy = No

[homes]
comment = Home Directories
read only = No
browseable = No

Chapter 14. Samba 235

[printers]
comment = All Printers
path = /var/spool/samba
printable = Yes
browseable = No

[tmp]
comment = Wakko tmp
path = /tmp
guest only = Yes

[html]
comment = Wakko www
path = /var/www/html
force user = andriusb
force group = users
read only = No
guest only = Yes

14.8.18. testprns
testprns <printername> <printcapname>

The testprns program checks if printername is valid and exists in the printcap. If the
printcapname is not specified, the default specified in the Samba or printcap configuration files
is used.

14.8.19. wbinfo
wbinfo <options>

The wbinfo program displays information from the winbindd daemon. The winbindd daemon must
be running for wbinfo to work.

14.9. Additional Resources
The following sections give you the means to explore Samba in greater detail.

14.9.1. Installed Documentation

• /usr/share/doc/samba-<version-number>/ — All additional files included with the
Samba distribution. This includes all helper scripts, sample configuration files, and documentation.

14.9.2. Red Hat Documentation

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — The Samba chapter ex-
plains how to configure a Samba server.

236 Chapter 14. Samba

14.9.3. Related Books

• The Official Samba-3 HOWTO-Collection by John H. Terpstra and Jelmer R. Vernooij; Prentice
Hall — The official Samba-3 documentation as issued by the Samba development team. This is
more of a reference guide than a step-by-step guide.

• Samba-3 by Example by John H. Terpstra; Prentice Hall — This is another official release issued
by the Samba development team which discusses detailed examples of OpenLDAP, DNS, DHCP,
and printing configuration files. This has step-by-step related information that helps in real-world
implementations.

• Using Samba, 2nd Edition by Jay T’s, Robert Eckstein, and David Collier-Brown; O’Reilly — A
good resource for novice to advanced users, which includes comprehensive reference material.

14.9.4. Useful Websites

• http://www.samba.org/ — Homepage for the Samba distribution and all official documentation cre-
ated by the Samba development team. Many resources are available in HTML and PDF formats,
while others are only available for purchase. Although many of these links are not Red Hat Enter-
prise Linux specific, some concepts may apply.

• http://samba.org/samba/archives.html — Active email lists for the Samba community. Enabling
digest mode is recommended due to high levels of list activity.

• Samba newsgroups — Samba threaded newsgroups, such as gmane.org, that use the NNTP protocol
are also available. This an alternative to receiving mailing list emails.

• http://samba.idealx.org/ — Idealx.org distributes installation and configuration
scripts for integration of Samba and OpenLDAP. These are highly recommended
for assisting in managing LDAP related resources. The scripts can be found at
/usr/share/doc/samba-3.0.3/LDAP/smbldap-tools or can be downloaded from the
Idealx website.

Chapter 15.
FTP

File Transfer Protocol (FTP) is one of the oldest and most commonly used protocols found on the
Internet today. Its purpose is to reliably transfer files between computer hosts on a network without
requiring the user to log directly into the remote host or have knowledge of how to use the remote
system. It allows users to access files on remote systems using a standard set of simple commands.

This chapter outlines the basics of the FTP protocol, as well as configuration options for the primary
FTP server shipped with Red Hat Enterprise Linux, vsftpd.

15.1. The File Transport Protocol
FTP uses a client server architecture to transfer files using the TCP network protocol. Because FTP
is an older protocol, it uses unencrypted username and password authentication. For this reason, it is
considered an insecure protocol and should not be used unless absolutely necessary. A good substitute
for FTP is sftp from the OpenSSH suite of tools. For information about configuring OpenSSH, refer
to the chapter titled OpenSSH in Red Hat Enterprise Linux System Administration Guide. For more
information about the SSH protocol, refer to Chapter 20 SSH Protocol.

However, because FTP is so prevalent on the Internet, it is often required to share files to the public.
System administrators, therefore, should be aware of the FTP protocol’s unique characteristics.

15.1.1. Multiple Ports, Multiple Modes
Unlike most protocols used on the Internet, FTP requires multiple network ports to work properly.
When an FTP client application initiates a connection to an FTP server, it opens port 21 on the server
— known as the command port. This port is used to issue all commands to the server. Any data re-
quested from the server is returned to the client via a data port. The port number for data connections,
and the way in which data connections are initialized, vary depending upon whether the client requests
the data in active or passive mode.

The following defines these modes:

active mode

Active mode is the original method used by the FTP protocol for transferring data to the client
application. When an active mode data transfer is initiated by the FTP client, the server opens a
connection from port 20 on the server to the IP address and a random, unprivileged port (greater
than 1024) specified by the client. This arrangement means that the client machine must be
allowed to accept connections over any port above 1024. With the growth of insecure networks,
such as the Internet, the use of firewalls to protect client machines is now prevalent. Because these
client-side firewalls often deny incoming connections from active mode FTP servers, passive
mode was devised.

passive mode

Passive mode, like active mode, is initiated by the FTP client application. When requesting data
from the server, the FTP client indicates it wants to access the data in passive mode and the server
provides the IP address and a random, unprivileged port (greater than 1024) on the server. The
client then connects to that port on the server to download the requested information.

While passive mode resolves issues for client-side firewall interference with data connections,
it can complicate administration of the server-side firewall. Limiting the range of unprivileged

238 Chapter 15. FTP

ports offered for passive connections in the FTP server’s configuration file is one way to reduce
the number of open ports on a server and simplify the task of creating firewall rules for the server.
Refer to Section 15.5.8 Network Options for more about limiting passive ports.

15.2. FTP Servers
Red Hat Enterprise Linux ships with two different FTP servers:

• Red Hat Content Accelerator — A kernel-based Web server that delivers high performance Web
server and FTP services. Since speed as its primary design goal, it has limited functionality
and runs only as an anonymous FTP server. For more information about configuring and
administering Red Hat Content Accelerator, consult the documentation available online at
http://www.redhat.com/docs/manuals/tux/.

• vsftpd — A fast, secure FTP daemon which is the preferred FTP server for Red Hat Enterprise
Linux. The remainder of this chapter focuses on vsftpd.

15.2.1. vsftpd
The Very Secure FTP Daemon (vsftpd) is designed from the ground up to be fast, stable, and, most
importantly, secure. Its ability to handle large numbers of connections efficiently and securely is why
vsftpd is the only stand-alone FTP distributed with Red Hat Enterprise Linux.

The security model used by vsftpd has three primary aspects:

• Strong separation of privileged and non-privileged processes — Separate processes handle different
tasks, and each of these processes run with the minimal privileges required for the task.

• Tasks requiring elevated privileges are handled by processes with the minimal privilege necessary
— By leveraging compatibilities found in the libcap library, tasks that usually require full root
privileges can be executed more safely from a less privileged process.

• Most processes run in a chroot jail — Whenever possible, processes are change-rooted to the
directory being shared; this directory is then considered a chroot jail. For example, if the direc-
tory /var/ftp/ is the primary shared directory, vsftpd reassigns /var/ftp/ to the new root
directory, known as /. This disallows any potential malicious hacker activities for any directories
not contained below the new root directory.

Use of these security practices has the following effect on how vsftpd deals with requests:

• The parent process runs with the least privileges required — The parent process dynamically cal-
culates the level of privileges it requires to minimize the level of risk. Child processes handle direct
interaction with the FTP clients and run with as close to no privileges as possible.

• All operations requiring elevated privileges are handled by a small parent process — Much like
the Apache HTTP Server, vsftpd launches unprivileged child processes to handle incoming con-
nections. This allows the privileged, parent process to be as small as possible and handle relatively
few tasks.

• All requests from unprivileged child processes are distrusted by the parent process — Communica-
tion with child processes are received over a socket, and the validity of any information from child
processes is checked before being acted on.

• Most interaction with FTP clients is handled by unprivileged child processes in a chroot jail —
Because these child processes are unprivileged and only have access to the directory being shared,
any crashed processes only allows the attacker access to the shared files.

Chapter 15. FTP 239

15.3. Files Installed with vsftpd
The vsftpd RPM installs the daemon (/usr/sbin/vsftpd), its configuration and related files, as
well as FTP directories onto the system. The following is a list of the files and directories most often
considered when configuring vsftpd:

• /etc/rc.d/init.d/vsftpd — The initialization script (initscript) used
by the /sbin/service command to start, stop, or reload vsftpd. Refer to
Section 15.4 Starting and Stopping vsftpd for more information about using this script.

• /etc/pam.d/vsftpd — The Pluggable Authentication Modules (PAM) configuration file for
vsftpd. This file defines the requirements a user must meet to login to the FTP server. For more
information, refer to Chapter 16 Pluggable Authentication Modules (PAM).

• /etc/vsftpd/vsftpd.conf — The configuration file for vsftpd. Refer to
Section 15.5 vsftpd Configuration Options for a list of important options contained within this
file.

• /etc/vsftpd.ftpusers — A list of users not allowed to log into vsftpd. By default, this list
includes the root, bin, and daemon users, among others.

• /etc/vsftpd.user_list — This file can be configured to either deny or allow access to the
users listed, depending on whether the userlist_deny directive is set to YES (default) or NO in
/etc/vsftpd/vsftpd.conf. If /etc/vsftpd.user_list is used to grant access to users, the
usernames listed must not appear in /etc/vsftpd.ftpusers.

• /var/ftp/ — The directory containing files served by vsftpd. It also contains the
/var/ftp/pub/ directory for anonymous users. Both directories are world-readable, but writable
only by the root user.

15.4. Starting and Stopping vsftpd
The vsftpd RPM installs the /etc/rc.d/init.d/vsftpd script, which can be accessed using the
/sbin/service command.

To start the server, as root type:

/sbin/service vsftpd start

To stop the server, as root type:

/sbin/service vsftpd stop

The restart option is a shorthand way of stopping and then starting vsftpd. This is the most
efficient way to make configuration changes take effect after editing the configuration file for vsftpd.

To restart the server, as root type:

/sbin/service vsftpd restart

The condrestart (conditional restart) option only starts vsftpd if it is currently running. This
option is useful for scripts, because it does not start the daemon if it is not running.

To conditionally restart the server, as root type:

/sbin/service vsftpd condrestart

By default, the vsftpd service does not start automatically at boot time. To configure the vsftpd
service to start at boot time, use an initscript utility, such as /sbin/chkconfig, /sbin/ntsysv, or the

240 Chapter 15. FTP

Services Configuration Tool program. Refer to the chapter titled Controlling Access to Services in
Red Hat Enterprise Linux System Administration Guide for more information regarding these tools.

15.4.1. Starting Multiple Copies of vsftpd
Sometimes one computer is used to serve multiple FTP domains. This is a technique called multihom-
ing. One way to multihome using vsftpd is by running multiple copies of the daemon, each with its
own configuration file.

To do this, first assign all relevant IP addresses to network devices or alias network devices on the
system. Refer to the chapter titled Network Configuration in Red Hat Enterprise Linux System Admin-
istration Guide for more information about configuring network devices and device aliases. Additional
information can be found about network configuration scripts in Chapter 8 Network Interfaces.

Next, the DNS server for the FTP domains must be configured to reference the correct machine. If the
DNS server is running on Red Hat Enterprise Linux, refer to the chapter titled BIND Configuration
in Red Hat Enterprise Linux System Administration Guide for instructions about using the Domain
Name Service Configuration Tool (system-config-bind). For information about BIND and its
configuration files, refer to Chapter 12 Berkeley Internet Name Domain (BIND).

For vsftpd to answer requests on different IP addresses, multiple copies of the daemon
must be running. The first copy must be run using the vsftpd initscripts, as outlined in
Section 15.4 Starting and Stopping vsftpd. This copy uses the standard configuration file,
/etc/vsftpd/vsftpd.conf.

Each additional FTP site must have a configuration file with a unique name in the /etc/vsftpd/
directory, such as /etc/vsftpd/vsftpd-site-2.conf. Each configuration file must be readable
and writable only by root. Within each configuration file for each FTP server listening on an IPv4
network, the following directive must be unique:

listen_address=N.N.N.N

Replace N.N.N.N with the unique IP address for the FTP site being served. If the site is using IPv6,
use the listen_address6 directive instead.

Once each additional server has a configuration file, the vsftpd daemon must be launched from a
root shell prompt using the following command:

vsftpd /etc/vsftpd/<configuration-file> &

In the above command, replace <configuration-file> with the unique name for the server’s
configuration file, such as /etc/vsftpd/vsftpd-site-2.conf.

Other directives to consider altering on a per-server basis are:

• anon_root

• local_root

• vsftpd_log_file

• xferlog_file

For a detailed list of directives available within vsftpd’s configuration file, refer to
Section 15.5 vsftpd Configuration Options.

To configure any additional servers to start automatically at boot time, add the above command to the
end of the /etc/rc.local file.

Chapter 15. FTP 241

15.5. vsftpd Configuration Options
Although vsftpd may not offer the level of customization other widely available FTP servers have,
it offers enough options to fill most administrator’s needs. The fact that it is not overly feature-laden
limits configuration and programmatic errors.

All configuration of vsftpd is handled by its configuration file, /etc/vsftpd/vsftpd.conf. Each
directive is on its own line within the file and follows the following format:

<directive>=<value>

For each directive, replace <directive> with a valid directive and <value> with a valid value.

Important

There must not be any spaces between the <directive>, equal symbol, and the <value> in a
directive.

Comment lines must be preceded by a hash mark (#) and are ignored by the daemon.

For a complete list of all directives available, refer to the man page for vsftpd.conf.

Important

For an overview of ways to secure vsftpd, refer to the chapter titled Server Security in the Red Hat
Enterprise Linux Security Guide.

The following is a list of some of the more important directives within /etc/vsftpd/vsftpd.conf.
All directives not explicitly found within vsftpd’s configuration file are set to their default value.

15.5.1. Daemon Options
The following is a list of directives which control the overall behavior of the vsftpd daemon.

• listen — When enabled, vsftpd runs in stand-alone mode. Red Hat Enterprise Linux sets this
value to YES. This directive cannot be used in conjunction with the listen_ipv6 directive.

The default value is NO.

• listen_ipv6 — When enabled, vsftpd runs in stand-alone mode, but listens only to IPv6 sock-
ets. This directive cannot be used in conjunction with the listen directive.

The default value is NO.

• session_support — When enabled, vsftpd attempts to maintain login
sessions for each user through Pluggable Authentication Modules (PAM). Refer to
Chapter 16 Pluggable Authentication Modules (PAM) for more information. If session logging is
not necessary, disabling this option allows vsftpd to run with less processes and lower privileges.

The default value is YES.

242 Chapter 15. FTP

15.5.2. Log In Options and Access Controls
The following is a list of directives which control the login behavior and access control mechanisms.

• anonymous_enable — When enabled, anonymous users are allowed to log in. The usernames
anonymous and ftp are accepted.

The default value is YES.

Refer to Section 15.5.3 Anonymous User Options for a list of directives affecting anonymous users.

• banned_email_file — If the deny_email_enable directive is set to YES, this directive spec-
ifies the file containing a list of anonymous email passwords which are not permitted access to the
server.

The default value is /etc/vsftpd.banned_emails.

• banner_file — Specifies the file containing text displayed when a connection is established to
the server. This option overrides any text specified in the ftpd_banner directive.

There is no default value for this directive.

• cmds_allowed — Specifies a comma-delimited list of FTP commands allowed by the server. All
other commands are rejected.

There is no default value for this directive.

• deny_email_enable — When enabled, any anonymous user using email passwords specified in
the /etc/vsftpd.banned_emails are denied access to the server. The name of the file refer-
enced by this directive can be specified using the banned_email_file directive.

The default value is NO.

• ftpd_banner — When enabled, the string specified within this directive is displayed when a con-
nection is established to the server. This option can be overridden by the banner_file directive.

By default vsftpd displays its standard banner.

• local_enable — When enabled, local users are allowed to log into the system.

The default value is YES.

Refer to Section 15.5.4 Local User Options for a list of directives affecting local users.

• pam_service_name — Specifies the PAM service name for vsftpd.

The default value is ftp. Note, in Red Hat Enterprise Linux, the value is set to vsftpd.

• tcp_wrappers — When enabled, TCP wrappers are used to grant access to the server. If the
FTP server is configured on multiple IP addresses, the VSFTPD_LOAD_CONF option can be used to
load different configuration files based on the IP address being requested by the client. For more
information about TCP Wrappers, refer to Chapter 17 TCP Wrappers and xinetd.

The default value is NO. Note, in Red Hat Enterprise Linux, the value is set to YES.

• userlist_deny — When used in conjunction with the userlist_enable directive and set
to NO, all local users are denied access unless the username is listed in the file specified by the
userlist_file directive. Because access is denied before the client is asked for a password,
setting this directive to NO prevents local users from submitting unencrypted passwords over the
network.

The default value is YES.

• userlist_enable — When enabled, the users listed in the file specified by the userlist_file
directive are denied access. Because access is denied before the client is asked for a password, users
are prevented from submitting unencrypted passwords over the network.

The default value is NO, however under Red Hat Enterprise Linux the value is set to YES.

Chapter 15. FTP 243

• userlist_file — Specifies the file referenced by vsftpd when the userlist_enable direc-
tive is enabled.

The default value is /etc/vsftpd.user_list and is created during installation.

• cmds_allowed — Specifies a comma separated list of FTP commands that the server allows. Any
other commands are rejected.

There is no default value for this directive.

15.5.3. Anonymous User Options
The following lists directives which control anonymous user access to the server. To use these options,
the anonymous_enable directive must be set to YES.

• anon_mkdir_write_enable— When enabled in conjunction with the write_enable directive,
anonymous users are allowed to create new directories within a parent directory which has write
permissions.

The default value is NO.

• anon_root — Specifies the directory vsftpd changes to after an anonymous user logs in.

There is no default value for this directive.

• anon_upload_enable — When enabled in conjunction with the write_enable directive,
anonymous users are allowed to upload files within a parent directory which has write permissions.

The default value is NO.

• anon_world_readable_only— When enabled, anonymous users are only allowed to download
world-readable files.

The default value is YES.

• ftp_username — Specifies the local user account (listed in /etc/passwd) used for the anony-
mous FTP user. The home directory specified in /etc/passwd for the user is the root directory of
the anonymous FTP user.

The default value is ftp.

• no_anon_password — When enabled, the anonymous user is not asked for a password.

The default value is NO.

• secure_email_list_enable — When enabled, only a specified list of email passwords for
anonymous logins are accepted. This is a convenient way to offer limited security to public content
without the need for virtual users.

Anonymous logins are prevented unless the password provided is listed in
/etc/vsftpd.email_passwords. The file format is one password per line, with no trailing
white spaces.

The default value is NO.

15.5.4. Local User Options
The following lists directives which characterize the way local users access the server. To use these
options, the local_enable directive must be set to YES.

• chmod_enable— When enabled, the FTP command SITE CHMOD is allowed for local users. This
command allows the users to change the permissions on files.

244 Chapter 15. FTP

The default value is YES.

• chroot_list_enable — When enabled, the local users listed in the file specified in the
chroot_list_file directive are placed in a chroot jail upon log in.

If enabled in conjunction with the chroot_local_user directive, the local users listed in the file
specified in the chroot_list_file directive are not placed in a chroot jail upon log in.

The default value is NO.

• chroot_list_file — Specifies the file containing a list of local users referenced when the
chroot_list_enable directive is set to YES.

The default value is /etc/vsftpd.chroot_list.

• chroot_local_user — When enabled, local users are change-rooted to their home directories
after logging in.

The default value is NO.

Warning

Enabling chroot_local_user opens up a number of security issues, especially for users with
upload privileges. For this reason, it is not recommended.

• guest_enable— When enabled, all non-anonymous users are logged in as the user guest, which
is the local user specified in the guest_username directive.

The default value is NO.

• guest_username — Specifies the username the guest user is mapped to.

The default value is ftp.

• local_root — Specifies the directory vsftpd changes to after a local user logs in.

There is no default value for this directive.

• local_umask — Specifies the umask value for file creation. Note that the default value is in octal
form (a numerical system with a base of eight), which includes a "0" prefix. Otherwise the value is
treated as a base-10 integer.

The default value is 022.

• passwd_chroot_enable— When enabled in conjunction with the chroot_local_user direc-
tive, vsftpd change-roots local users based on the occurrence of the /./ in the home directory
field within /etc/passwd.

The default value is NO.

• user_config_dir — Specifies the path to a directory containing configuration files bearing the
name of local system users that contain specific setting for that user. Any directive in the user’s
configuration file overrides those found in /etc/vsftpd/vsftpd.conf.

There is no default value for this directive.

15.5.5. Directory Options
The following lists directives which affect directories.

• dirlist_enable — When enabled, users are allowed to view directory lists.

The default value is YES.

Chapter 15. FTP 245

• dirmessage_enable— When enabled, a message is displayed whenever a user enters a directory
with a message file. This message is found within the directory being entered. The name of this file
is specified in the message_file directive and is .message by default.

The default value is NO. Note, in Red Hat Enterprise Linux, the value is set to YES.

• force_dot_files — When enabled, files beginning with a dot (.) are listed in directory listings,
with the exception of the . and .. files.

The default value is NO.

• hide_ids — When enabled, all directory listings show ftp as the user and group for each file.

The default value is NO.

• message_file — Specifies the name of the message file when using the dirmessage_enable
directive.

The default value is .message.

• text_userdb_names— When enabled, test usernames and group names are used in place of UID
and GID entries. Enabling this option may slow performance of the server.

The default value is NO.

• use_localtime— When enabled, directory listings reveal the local time for the computer instead
of GMT.

The default value is NO.

15.5.6. File Transfer Options
The following lists directives which affect directories.

• download_enable — When enabled, file downloads are permitted.

The default value is YES.

• chown_uploads — When enabled, all files uploaded by anonymous users are owned by the user
specified in the chown_username directive.

The default value is NO.

• chown_username — Specifies the ownership of anonymously uploaded files if the
chown_uploads directive is enabled.

The default value is root.

• write_enable — When enabled, FTP commands which can change the file system are allowed,
such as DELE, RNFR, and STOR.

The default value is YES.

15.5.7. Logging Options
The following lists directives which affect vsftpd’s logging behavior.

• dual_log_enable — When enabled in conjunction with xferlog_enable, vsftpd writes two
files simultaneously: a wu-ftpd-compatible log to the file specified in the xferlog_file
directive (/var/log/xferlog by default) and a standard vsftpd log file specified in the
vsftpd_log_file directive (/var/log/vsftpd.log by default).

The default value is NO.

246 Chapter 15. FTP

• log_ftp_protocol — When enabled in conjunction with xferlog_enable and with
xferlog_std_format set to NO, all FTP commands and responses are logged. This directive is
useful for debugging.

The default value is NO.

• syslog_enable — When enabled in conjunction with xferlog_enable, all logging
normally written to the standard vsftpd log file specified in the vsftpd_log_file directive
(/var/log/vsftpd.log by default) is sent to the system logger instead under the FTPD facility.

The default value is NO.

• vsftpd_log_file — Specifies the vsftpd log file. For this file to be used, xferlog_enable
must be enabled and xferlog_std_formatmust either be set to NO or, if xferlog_std_format
is set to YES, dual_log_enable must be enabled. It is important to note that if syslog_enable
is set to YES, the system log is used instead of the file specified in this directive.

The default value is /var/log/vsftpd.log.

• xferlog_enable — When enabled, vsftpd logs connections (vsftpd format only)
and file transfer information to the log file specified in the vsftpd_log_file directive
(/var/log/vsftpd.log by default). If xferlog_std_format is set to YES, file transfer
information is logged but connections are not, and the log file specified in xferlog_file
(/var/log/xferlog by default) is used instead. It is important to note that both log files and log
formats are used if dual_log_enable is set to YES.

The default value is NO. Note, in Red Hat Enterprise Linux, the value is set to YES.

• xferlog_file — Specifies the wu-ftpd-compatible log file. For this file to be used,
xferlog_enable must be enabled and xferlog_std_format must be set to YES. It is also
used if dual_log_enable is set to YES.

The default value is /var/log/xferlog.

• xferlog_std_format — When enabled in conjunction with xferlog_enable, only
a wu-ftpd-compatible file transfer log is written to the file specified in the xferlog_file
directive (/var/log/xferlog by default). It is important to note that this file only logs file
transfers and does not log connections to the server.

The default value is NO. Note, in Red Hat Enterprise Linux, the value is set to YES.

Important

To maintain compatibility with log files written by the older wu-ftpd FTP server, the
xferlog_std_format directive is set to YES under Red Hat Enterprise Linux. However, this setting
means that connections to the server are not logged.

To both log connections in vsftpd format and maintain a wu-ftpd-compatible file transfer log, set
dual_log_enable to YES.

If maintaining a wu-ftpd-compatible file transfer log is not important, either set xferlog_std_format
to NO, comment the line with a hash mark (#), or delete the line entirely.

15.5.8. Network Options
The following lists directives which affect how vsftpd interacts with the network.

• accept_timeout — Specifies the amount of time for a client using passive mode to establish a
connection.

Chapter 15. FTP 247

The default value is 60.

• anon_max_rate — Specifies the maximum data transfer rate for anonymous users in bytes per
second.

The default value is 0, which does not limit the transfer rate.

• connect_from_port_20 When enabled, vsftpd runs with enough privileges to open port 20 on
the server during active mode data transfers. Disabling this option allows vsftpd to run with less
privileges, but may be incompatible with some FTP clients.

The default value is NO. Note, in Red Hat Enterprise Linux, the value is set to YES.

• connect_timeout — Specifies the maximum amount of time a client using active mode has to
respond to a data connection, in seconds.

The default value is 60.

• data_connection_timeout— Specifies maximum amount of time data transfers are allowed to
stall, in seconds. Once triggered, the connection to the remote client is closed.

The default value is 300.

• ftp_data_port — Specifies the port used for active data connections when
connect_from_port_20 is set to YES.

The default value is 20.

• idle_session_timeout — Specifies the maximum amount of time between commands from a
remote client. Once triggered, the connection to the remote client is closed.

The default value is 300.

• listen_address — Specifies the IP address on which vsftpd listens for network connections.

There is no default value for this directive.

Tip

If running multiple copies of vsftpd serving different IP addresses, the configuration file for
each copy of the vsftpd daemon must have a different value for this directive. Refer to
Section 15.4.1 Starting Multiple Copies of vsftpd for more information about multihomed FTP
servers.

• listen_address6 — Specifies the IPv6 address on which vsftpd listens for network connec-
tions when listen_ipv6 is set to YES.

There is no default value for this directive.

Tip

If running multiple copies of vsftpd serving different IP addresses, the configuration file for
each copy of the vsftpd daemon must have a different value for this directive. Refer to
Section 15.4.1 Starting Multiple Copies of vsftpd for more information about multihomed FTP
servers.

• listen_port — Specifies the port on which vsftpd listens for network connections.

The default value is 21.

• local_max_rate — Specifies the maximum rate data is transfered for local users logged into the
server in bytes per second.

The default value is 0, which does not limit the transfer rate.

248 Chapter 15. FTP

• max_clients — Specifies the maximum number of simultaneous clients allowed to connect to
the server when it is running in standalone mode. Any additional client connections would result in
an error message.

The default value is 0, which does not limit connections.

• max_per_ip — Specifies the maximum of clients allowed to connected from the same source IP
address.

The default value is 0, which does not limit connections.

• pasv_address— Specifies the IP address for the public facing IP address of the server for servers
behind Network Address Translation (NAT) firewalls. This enables vsftpd to hand out the correct
return address for passive mode connections.

There is no default value for this directive.

• pasv_enable — When enabled, passive mode connects are allowed.

The default value is YES.

• pasv_max_port — Specifies the highest possible port sent to the FTP clients for passive mode
connections. This setting is used to limit the port range so that firewall rules are easier to create.

The default value is 0, which does not limit the highest passive port range. The value must not
exceed 65535.

• pasv_min_port — Specifies the lowest possible port sent to the FTP clients for passive mode
connections. This setting is used to limit the port range so that firewall rules are easier to create.

The default value is 0, which does not limit the lowest passive port range. The value must not be
lower 1024.

• pasv_promiscuous — When enabled, data connections are not checked to make sure they are
originating from the same IP address. This setting is only useful for certain types of tunneling.

Caution

Do not enable this option unless absolutely necessary as it disables an important security feature
which verifies that passive mode connections originate from the same IP address as the control
connection that initiates the data transfer.

The default value is NO.

• port_enable — When enabled, active mode connects are allowed.

The default value is YES.

15.6. Additional Resources
For more information about vsftpd, refer to the following resources.

15.6.1. Installed Documentation

• The /usr/share/doc/vsftpd-<version-number>/ directory — Replace
<version-number> with the installed version of the vsftpd package. This directory
contains a README with basic information about the software. The TUNING file contains basic
performance tuning tips and the SECURITY/ directory contains information about the security
model employed by vsftpd.

Chapter 15. FTP 249

• vsftpd related man pages — There are a number of man pages for the daemon and configuration
files. The following lists some of the more important man pages.

Server Applications

• man vsftpd — Describes available command line options for vsftpd.

Configuration Files

• man vsftpd.conf— Contains a detailed list of options available within the configuration
file for vsftpd.

• man 5 hosts_access — Describes the format and options available within the TCP
wrappers configuration files: hosts.allow and hosts.deny.

15.6.2. Useful Websites

• http://vsftpd.beasts.org/ — The vsftpd project page is a great place to locate the latest documen-
tation and to contact the author of the software.

• http://slacksite.com/other/ftp.html — This website provides a concise explanation of the differences
between active and passive mode FTP.

• http://war.jgaa.com/ftp/?cmd=rfc — A comprehensive list of Request for Comments (RFCs) related
to the FTP protocol.

15.6.3. Related Books

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — The Server Security chapter explains
ways to secure vsftpd and other services.

250 Chapter 15. FTP

III. Security Reference

Using secure protocols is a critical part of maintaining system integrity. This part describes critical
tools used for the purpose of user authentication, network access control, and secure network com-
munication. For more information about securing a Red Hat Enterprise Linux system, refer to the Red
Hat Enterprise Linux Security Guide.

Table of Contents
16. Pluggable Authentication Modules (PAM) ... 253
17. TCP Wrappers and xinetd... 263
18. iptables ... 279
19. Kerberos... 291
20. SSH Protocol.. 301
21. SELinux ... 309

Chapter 16.
Pluggable Authentication Modules (PAM)

Programs which grant users access to a system verify each user’s identity through a process called
authentication. Historically, each such program had its own way of performing the task of authen-
tication. Under Red Hat Enterprise Linux, many such programs are configured to use a centralized
authentication mechanism called Pluggable Authentication Modules or PAM.

PAM uses a pluggable, modular architecture, which affords the system administrator a great deal of
flexibility in setting authentication policies for the system.

In most situations, the default PAM configuration file for a PAM-aware application is sufficient. How-
ever, sometimes it may become necessary to edit a PAM configuration file. Because misconfiguration
of PAM can compromise system security, it is important to understand the structure of these files
before making any modifications (refer to Section 16.3 PAM Configuration File Format for more in-
formation).

16.1. Advantages of PAM
PAM offers the following advantages:

• It provides a common authentication scheme that can be used with a wide variety of applications.

• It allows a large amount of flexibility and control over authentication for both system administrators
and application developers.

• It allows application developers to develop programs without creating their own authentication
scheme.

16.2. PAM Configuration Files
The directory /etc/pam.d/ contains the PAM configuration files for each PAM-aware application.
In earlier versions of PAM, the file /etc/pam.conf was used, but this file is now deprecated and is
only used if the /etc/pam.d/ directory does not exist.

16.2.1. PAM Service Files
Each PAM-aware application or service has a file within the /etc/pam.d/ directory. Each file within
this directory bears the name of the service for which it controls access.

It is up to the PAM-aware program to define its service name and install its own PAM configuration
file in the /etc/pam.d/ directory. For example, the login program defines its service name as login
and installs the /etc/pam.d/login PAM configuration file.

16.3. PAM Configuration File Format
Each PAM configuration file contains a group of directives formatted as follows:

<module interface> <control flag> <module name> <module arguments>

Each of these elements are explained in the subsequent sections.

254 Chapter 16. Pluggable Authentication Modules (PAM)

16.3.1. Module Interface
There are four types of PAM module interfaces which correlate to different aspects of the authorization
process:

• auth — This module interface authenticates use. For example, it asks for and verifies the validity
of a password. Modules with this interface can also set credentials, such as group memberships or
Kerberos tickets.

• account — This module interface verifies that access is allowed. For example, it may check if a
user account is expired or is allowed to log in at a particular time of day.

• password — This module interface sets and verifies passwords.

• session — This module interface configures and manages user sessions. Modules with this inter-
face can also perform additional tasks that are needed to allow access, like mounting a user’s home
directory and making the user’s mailbox available.

Note

An individual module can provide any or all module interfaces. For instance, pam_unix.so provides
all four module interfaces.

In a PAM configuration file, the module interface is the first field defined. For example, a typical line
in a configuration may look like this:

auth required pam_unix.so

This instructs PAM to use the pam_unix.so module’s auth interface.

16.3.1.1. Stacking Module Interfaces
Module interface directives can be stacked, or placed upon one another, so that multiple modules
are used together for one purpose. For this reason, the order in which the modules are listed is very
important to the authentication process.

Stacking makes it very easy for an administrator to require specific conditions to exist before allowing
the user to authenticate. For example, rlogin normally uses five stacked auth modules, as seen in
its PAM configuration file:

auth required pam_nologin.so
auth required pam_securetty.so
auth required pam_env.so
auth sufficient pam_rhosts_auth.so
auth required pam_stack.so service=system-auth

Before someone is allowed to use rlogin, PAM verifies that the /etc/nologin file does not exist,
that they are not trying to log in remotely as a root user over a network connection, and that any
environmental variables can be loaded. Then, if a successful rhosts authentication is performed, the
connection is allowed. If the rhosts authentication fails, then standard password authentication is
performed.

Chapter 16. Pluggable Authentication Modules (PAM) 255

16.3.2. Control Flag
All PAM modules generate a success or failure result when called. Control flags tell PAM what do
with the result. Since modules can be stacked in a particular order, control flags decide how important
the success or failure of a particular module is to the overall goal of authenticating the user to the
service.

There are four predefined control flags:

• required — The module result must be successful for authentication to continue. If a required
module result fails, the user is not notified until results on all modules referencing that interface are
completed.

• requisite — The module result must be successful for authentication to continue. However, if a
requisite module result fails, the user is notified immediately with a message reflecting the first
failed required or requisite module.

• sufficient— The module result is ignored if it fails. However, if a sufficient flagged module
result is successful and no required flagged modules above it have failed, then no other results
are required and the user is authenticated to the service.

• optional — The module result is ignored. A module flagged as optional only becomes neces-
sary for successful authentication when there are no other modules referencing the interface.

Important

The order in which required modules are called is not critical. The sufficient and requisite
control flags cause order to become important.

A newer control flag syntax which allows for more precise control is now available for PAM. Please
see the PAM documentation located in the /usr/share/doc/pam-<version-number>/ direc-
tory for information on this new syntax (where <version-number> is the version number for
PAM).

16.3.3. Module Name
The module name provides PAM the name of the pluggable module containing the specified module
interface. Under older versions of Red Hat Enterprise Linux, the full path to the module was provided
within the PAM configuration file, such as /lib/security/pam_stack.so. However, since the ad-
vent of multilib systems, which store 64-bit PAM modules within the /lib64/security/ directory,
the directory name is omitted because the application is linked to the appropriate version of libpam,
which can locate the correct version of the module.

16.3.4. Module Arguments
PAM uses arguments to pass information to a pluggable module during authentication for some mod-
ules.

For example, the pam_userdb.so module uses secrets stored in a Berkeley DB file to authenticate
the user. Berkeley DB is an open source database system embedded in many applications. The module
takes a db argument so that Berkeley DB knows which database to use for the requested service.

A typical pam_userdb.so line within a PAM configuration file looks like this:

auth required pam_userdb.so db=<path-to-file>

256 Chapter 16. Pluggable Authentication Modules (PAM)

In the previous example, replace <path-to-file> with the full path to the Berkeley DB database
file.

Invalid arguments are ignored and do not otherwise affect the success or failure of the PAM module.
However, most modules report errors to the /var/log/messages file.

16.4. Sample PAM Configuration Files
Below is a sample PAM application configuration file:

#%PAM-1.0
auth required pam_securetty.so
auth required pam_unix.so shadow nullok
auth required pam_nologin.so
account required pam_unix.so
password required pam_cracklib.so retry=3
password required pam_unix.so shadow nullok use_authtok
session required pam_unix.so

The first line is a comment as denoted by the hash mark (#) at the beginning of the line.

Lines two through four stack three modules for login authentication.

auth required pam_securetty.so

This module makes sure that if the user is trying to log in as root, the tty on which the user is logging
in is listed in the /etc/securetty file, if that file exists.

auth required pam_unix.so shadow nullok

This module prompts the user for a password and then checks the password using the information
stored in /etc/passwd and, if it exists, /etc/shadow. The pam_unix.so module automatically
detects and uses shadow passwords to authenticate users. Refer to Section 6.5 Shadow Passwords for
more information.

The argument nullok instructs the pam_unix.so module to allow a blank password.

auth required pam_nologin.so

This is the final authentication step. It verifies whether the file /etc/nologin exists. If nologin
does exist and the user is not root, authentication fails.

Note

In this example, all three auth modules are checked, even if the first auth module fails. This prevents
the user from knowing at what stage their authentication failed. Such knowledge in the hands of an
attacker could allow them to more easily deduce how to crack the system.

account required pam_unix.so

This module performs any necessary account verification. For example, if shadow passwords have
been enabled, the account component of the pam_unix.so module checks to see if the account has
expired or if the user has not changed the password within the grace period allowed.

password required pam_cracklib.so retry=3

Chapter 16. Pluggable Authentication Modules (PAM) 257

If a password has expired, the password component of the pam_cracklib.so module prompts for a
new password. It then tests the newly created password to see whether it can easily be determined by
a dictionary-based password cracking program. If it fails this test the first time, it gives the user two
more chances to create a strong password, as specified in the retry=3 argument.

password required pam_unix.so shadow nullok use_authtok

This line specifies that if the program changes the user’s password, it should use the password
component of the pam_unix.so module to do so. This only happens if the auth portion of the
pam_unix.so module has determined that the password needs to be changed.

The argument shadow tells the module to create shadow passwords when updating a user’s password.

The argument nullok instructs the module to allow the user to change their password from a blank
password, otherwise a null password is treated as an account lock.

The final argument on this line, use_authtok, provides a good example of the importance of order
when stacking PAM modules. This argument tells the module not to prompt the user for a new pass-
word. Instead, it accepts any password that was recorded by a previous password module. In this way,
all new passwords must pass the pam_cracklib.so test for secure passwords before being accepted.

session required pam_unix.so

The final line specifies that the session component of the pam_unix.so module manages the ses-
sion. This module logs the username and the service type to /var/log/messages at the beginning
and end of each session. It can be supplemented by stacking it with other session modules for more
functionality.

The next sample configuration file illustrates auth module stacking for the rlogin program.

#%PAM-1.0
auth required pam_nologin.so
auth required pam_securetty.so
auth required pam_env.so
auth sufficient pam_rhosts_auth.so
auth required pam_stack.so service=system-auth

First, pam_nologin.so checks to see if /etc/nologin exists. If it does, no one can log in except
for root.

auth required pam_securetty.so

The pam_securetty.so module prevents the root user from logging in on insecure terminals. This
effectively disallows all root rlogin attempts due to the application’s limited security safeguards.

Tip

To log in remotely as the root user, use OpenSSH instead. For more information, refer to
Chapter 20 SSH Protocol .

auth required pam_env.so

This line loads the pam_env.so module, which sets the environmental variables specified in
/etc/security/pam_env.conf.

auth sufficient pam_rhosts_auth.so

258 Chapter 16. Pluggable Authentication Modules (PAM)

The pam_rhosts_auth.so module authenticates the user using .rhosts in the user’s home
directory. If this succeeds, PAM immediately considers the authentication to have succeeded. If
pam_rhosts_auth.so fails to authenticate the user, the authentication attempt is ignored.

auth required pam_stack.so service=system-auth

If the pam_rhosts_auth.so module fails to successfully authenticate the user, the pam_stack.so
module performs normal password authentication.

The argument service=system-auth indicates that the user must now pass through the PAM con-
figuration for system authentication as found in /etc/pam.d/system-auth.

Tip

To prevent PAM from prompting for a password when the securetty result fails, change the
pam_securetty.so module from required to requisite.

16.5. Creating PAM Modules
New PAM modules can be added at any time for PAM-aware applications to use. For example, if a
developer invents a one-time-password creation method and writes a PAM module to support it, PAM-
aware programs can immediately use the new module and password method without being recompiled
or otherwise modified. This allows developers and system administrators to mix-and-match, as well
as test, authentication methods for different programs without recompiling them.

Documentation on writing modules is included in the
/usr/share/doc/pam-<version-number>/ directory (where <version-number> is the
version number for PAM).

16.6. PAM and Administrative Credential Caching
A variety of graphical administrative tools under Red Hat Enterprise Linux give users elevated priv-
ileges for up to five minutes via the pam_timestamp.so module. It is important to understand how
this mechanism works because a user who walks away from a terminal while pam_timestamp.so is
in effect leaves the machine open to manipulation by anyone with physical access to the console.

Under the PAM timestamp scheme, the graphical administrative application prompts the user for
the root password when it is launched. Once authenticated, the pam_timestamp.so module cre-
ates a timestamp file within the /var/run/sudo/ directory by default. If the timestamp file al-
ready exists, other graphical administrative programs do not prompt for a password. Instead, the
pam_timestamp.so module freshens the timestamp file — reserving an extra five minutes of un-
challenged administrative access for the user.

The existence of the timestamp file is denoted by an authentication icon in the notification area of the
panel. Below is an illustration of the authentication icon:

Figure 16-1. The Authentication Icon

Chapter 16. Pluggable Authentication Modules (PAM) 259

16.6.1. Removing the Timestamp File
It is recommended that before walking away from a console where a PAM timestamp is active, the
timestamp file be destroyed. To do this from within a graphical environment, click on the authentica-
tion icon on the panel. When a dialog box appears, click on the Forget Authorization button.

Figure 16-2. Authentication Icon Dialog

If logged into a system remotely using ssh, use the /sbin/pam_timestamp_check -k root com-
mand to destroy the timestamp file.

Note

You must be logged in as the user who originally invoked the pam_timestamp.so module in order to
use the /sbin/pam_timestamp_check command. Do not log in as root to issue this command.

For information about destroying the timestamp file using pam_timestamp_check, refer to the
pam_timestamp_check man page.

16.6.2. Common pam_timestamp Directives
The pam_timestamp.somodule accepts several directives. Below are the two most commonly used
options:

• timestamp_timeout — Specifies the number of seconds the during which the timestamp file is
valid (in seconds). The default value is 300 seconds (five minutes).

• timestampdir — Specifies the directory in which the timestamp file is stored. The default value
is /var/run/sudo/.

For more information about controlling the pam_timestamp.so module, refer to
Section 16.8.1 Installed Documentation .

16.7. PAM and Device Ownership
Red Hat Enterprise Linux allows the first user to log in on the physical console of the machine the
ability to manipulate some devices and perform some tasks normally reserved for the root user. This
is controlled by a PAM module called pam_console.so.

260 Chapter 16. Pluggable Authentication Modules (PAM)

16.7.1. Device Ownership
When a user logs into a Red Hat Enterprise Linux system, the pam_console.so module is called
by login or the graphical login programs, gdm and kdm. If this user is the first user to log in at the
physical console — called the console user — the module grants the user ownership of a variety of
devices normally owned by root. The console user owns these devices until the last local session for
that user ends. Once the user has logged out, ownership of the devices reverts back to the root user.

The devices affected include, but are not limited to, sound cards, diskette drives, and CD-ROM drives.

This allows a local user to manipulate these devices without attaining root access, thus simplifying
common tasks for the console user.

By modifying the file /etc/security/console.perms, the administrator can edit the list of de-
vices controlled by pam_console.so.

Warning

If the gdm, kdm, or xdm display manager configuration file has been altered to allow remote users
to log in and the host is configured to run at runlevel 5, it is advisable to change the <console> and
<xconsole> directives within the /etc/security/console.perms to the following values:

<console>=tty[0-9][0-9]* vc/[0-9][0-9]* :0\.[0-9] :0
<xconsole>=:0\.[0-9] :0

Doing this prevents remote users from gaining access to devices and restricted applications on the
machine.

If the gdm, kdm, or xdm display manager configuration file has been altered to allow remote users
to log in and the host is configured to run at any multiple user runlevel other than 5, it is advisable
to remove the <xconsole> directive entirely and change the <console> directive to the following
value:

<console>=tty[0-9][0-9]* vc/[0-9][0-9]*

16.7.2. Application Access
The console user is also allowed access to certain programs with a file bearing the command name in
the /etc/security/console.apps/ directory.

One notable group of applications the console user has access to are three programs which shut off or
reboot the system. These are:

• /sbin/halt

• /sbin/reboot

• /sbin/poweroff

Because these are PAM-aware applications, they call the pam_console.so module as a requirement
for use.

For more information, refer to the Section 16.8.1 Installed Documentation .

Chapter 16. Pluggable Authentication Modules (PAM) 261

16.8. Additional Resources
The following resources further explain methods to use and configure PAM. In addition to these
resources, read the PAM configuration files on the system to better understand how they are structured.

16.8.1. Installed Documentation

• PAM related man pages — There are a number of man pages for the various applications and
configuration files involved with PAM. The following is a list of some of the more important man
pages.

Configuration Files

• man pam — Good introductory information on PAM, including the structure and pur-
pose of the PAM configuration files. Note that although this man page talks about the
/etc/pam.conf file, the actual configuration files for PAM under Red Hat Enterprise
Linux are in the /etc/pam.d/ directory.

• man pam_console — Describes the purpose of the pam_console.so module. It also
describes the appropriate syntax for an entry within a PAM configuration file.

• man console.apps — Describes the format and options available within
/etc/security/console.apps the configuration file which defines which applications
are accessible by the console user assigned by PAM.

• man console.perms — Describes the format and options available within
/etc/security/console.perms, the configuration file for the console user permissions
assigned by PAM.

• man pam_timestamp — Describes the pam_timestamp.so module.

• /usr/share/doc/pam-<version-number> — Contains a System Administrators’ Guide, a
Module Writers’ Manual, and the Application Developers’ Manual, as well as a copy of the PAM
standard, DCE-RFC 86.0 (replace <version-number> with the version number of PAM).

• /usr/share/doc/pam-<version-number>/txts/README.pam_timestamp — Contains
information about the pam_timestamp.so PAM module (replace <version-number> with
the version number of PAM).

16.8.2. Useful Websites

• http://www.kernel.org/pub/linux/libs/pam/ — The primary distribution website for the Linux-PAM
project, containing information on various PAM modules, a FAQ, and additional PAM documenta-
tion.

262 Chapter 16. Pluggable Authentication Modules (PAM)

Chapter 17.
TCP Wrappers and xinetd

Controlling access to network services is one of the most important security tasks facing a server
administrator. Red Hat Enterprise Linux provides several tools which do just that. For instance, an
iptables-based firewall filters out unwelcome network packets within the kernel’s network stack.
For network services that utilize it, TCP wrappers add an additional layer of protection by defining
which hosts are or are not allowed to connect to "wrapped" network services. One such wrapped
network service is the xinetd super server. This service is called a super server because it controls
connections to a subset of network services and further refines access control.

Figure 17-1 is a basic illustration of how these tools work together to protect network services.

Figure 17-1. Access Control to Network Services

This chapter focuses on the role of TCP wrappers and xinetd in controlling access to network ser-
vices and reviews how these tools can be used to enhance both logging and utilization management.
For a discussion of using firewalls with iptables, refer to Chapter 18 iptables.

264 Chapter 17. TCP Wrappers and xinetd

17.1. TCP Wrappers
The TCP wrappers package (tcp_wrappers) is installed by default and provides host-based
access control to network services. The most important component within the package is the
/usr/lib/libwrap.a library. In general terms, a TCP wrapped service is one that has been
compiled against the libwrap.a library.

When a connection attempt is made to a TCP wrapped service, the service first references the hosts
access files (/etc/hosts.allow and /etc/hosts.deny) to determine whether or not the client
host is allowed to connect. In most cases, it then uses the syslog daemon (syslogd) to write the name
of the requesting host and the requested service to /var/log/secure or /var/log/messages.

If a client host is allowed to connect, TCP wrappers release control of the connection to the requested
service and do not interfere further with communication between the client host and the server.

In addition to access control and logging, TCP wrappers can activate commands to interact with the
client before denying or releasing control of the connection to the requested network service.

Because TCP wrappers are a valuable addition to any server administrator’s arsenal of security
tools, most network services within Red Hat Enterprise Linux are linked against the libwrap.a
library. Some such applications include /usr/sbin/sshd, /usr/sbin/sendmail, and
/usr/sbin/xinetd.

Note

To determine if a network service binary is linked against libwrap.a, type the following command as
the root user:

strings -f <binary-name> | grep hosts_access

Replace <binary-name> with the name of the network service binary.

If a prompt is returned, then the network service is not linked against libwrap.a.

17.1.1. Advantages of TCP Wrappers
TCP wrappers provide the following advantages over other network service control techniques:

• Transparency to both the client host and the wrapped network service — Both the connecting client
and the wrapped network service are unaware that TCP wrappers are in use. Legitimate users are
logged and connected to the requested service while connections from banned clients fail.

• Centralized management of multiple protocols — TCP wrappers operate separately from the net-
work services they protect, allowing many server applications to share a common set of configura-
tion files for simpler management.

17.2. TCP Wrappers Configuration Files
To determine if a client machine is allowed to connect to a service, TCP wrappers reference the
following two files, which are commonly referred to as hosts access files:

• /etc/hosts.allow

• /etc/hosts.deny

Chapter 17. TCP Wrappers and xinetd 265

When a client request is received by a TCP wrapped service, it takes the following basic steps:

1. References /etc/hosts.allow . — The TCP wrapped service sequentially parses the
/etc/hosts.allow file and applies the first rule specified for that service. If it finds a
matching rule, it allows the connection. If not, it moves on to the next step.

2. References /etc/hosts.deny. — The TCP wrapped service sequentially parses the
/etc/hosts.deny file. If it finds a matching rule, it denies the connection. If not, access to
the service is granted.

The following are important points to consider when using TCP wrappers to protect network services:

• Because access rules in hosts.allow are applied first, they take precedence over rules specified in
hosts.deny. Therefore, if access to a service is allowed in hosts.allow, a rule denying access
to that same service in hosts.deny is ignored.

• The rules in each file are read from the top down and the first matching rule for a given service is
the only one applied. The order of the rules is extremely important.

• If no rules for the service are found in either file, or if neither file exists, access to the service is
granted.

• TCP wrapped services do not cache the rules from the hosts access files, so any changes to
hosts.allow or hosts.deny take effect immediately without restarting network services.

Warning

If the last line of a hosts access file is not a newline character (created by pressing the [Enter] key),
the last rule in the file fails and an error is logged to either /var/log/messages or /var/log/secure.
This is also the case for a rule that spans multiple lines without using the backslash. The following
example illustrates the relevant portion of a log message for a rule failure due to either of these
circumstances:

warning: /etc/hosts.allow, line 20: missing newline or line too long

17.2.1. Formatting Access Rules
The format for both /etc/hosts.allow and /etc/hosts.deny are identical. Any blank lines or
lines that start with a hash mark (#) are ignored, and each rule must be on its own line.

Each rule uses the following basic format to control access to network services:

<daemon list>: <client list> [: <option>: <option>: ...]

• <daemon list> — A comma separated list of process names (not service names) or the ALL
wildcard (refer to Section 17.2.1.1 Wildcards). The daemon list also accepts operators (refer to
Section 17.2.1.4 Operators) to allow greater flexibility.

• <client list> — A comma separated list of hostnames, host IP addresses, special patterns
(refer to Section 17.2.1.2 Patterns), or special wildcards (refer to Section 17.2.1.1 Wildcards)
which identify the hosts effected by the rule. The client list also accepts operators listed in
Section 17.2.1.4 Operators to allow greater flexibility.

266 Chapter 17. TCP Wrappers and xinetd

• <option> — An optional action or colon separated list of actions performed when the rule
is triggered. Option fields support expansions (refer to Section 17.2.2.4 Expansions), launch shell
commands, allow or deny access, and alter logging behavior (refer to Section 17.2.2 Option Fields).

The following is a basic sample hosts access rule:

vsftpd : .example.com

This rule instructs TCP wrappers to watch for connections to the FTP daemon (vsftpd) from any
host in the example.com domain. If this rule appears in hosts.allow, the connection is accepted.
If this rule appears in hosts.deny, the connection is rejected.

The next sample hosts access rule is more complex and uses two option fields:

sshd : .example.com \
: spawn /bin/echo ‘/bin/date‘ access denied>>/var/log/sshd.log \
: deny

Note that each option field is preceded by the backslash (\). Use of the backslash prevents failure of
the rule due to length.

This sample rule states that if a connection to the SSH daemon (sshd) is attempted from a host in the
example.com domain, execute the echo command (which logs the attempt to a special file),
and deny the connection. Because the optional deny directive is used, this line denies access
even if it appears in the hosts.allow file. For a more detailed look at available options, refer to
Section 17.2.2 Option Fields.

17.2.1.1. Wildcards
Wildcards allow TCP wrappers to more easily match groups of daemons or hosts. They are used most
frequently in the client list field of access rules.

The following wildcards may be used:

• ALL — Matches everything. It can be used for both the daemon list and the client list.

• LOCAL — Matches any host that does not contain a period (.), such as localhost.

• KNOWN — Matches any host where the hostname and host address are known or where the user is
known.

• UNKNOWN — Matches any host where the hostname or host address are unknown or where the user
is unknown.

• PARANOID — Matches any host where the hostname does not match the host address.

Caution

The KNOWN, UNKNOWN, and PARANOID wildcards should be used with care as a disruption in name
resolution may prevent legitimate users from gaining access to a service.

17.2.1.2. Patterns
Patterns can be used in the client list field of access rules to more precisely specify groups of client
hosts.

The following is a list of the most common accepted patterns for a client list entry:

Chapter 17. TCP Wrappers and xinetd 267

• Hostname beginning with a period (.) — Placing a period at the beginning of a hostname matches
all hosts sharing the listed components of the name. The following example applies to any host
within the example.com domain:
ALL : .example.com

• IP address ending with a period (.) — Placing a period at the end of an IP address matches all
hosts sharing the initial numeric groups of an IP address. The following example applies to any
host within the 192.168.x.x network:
ALL : 192.168.

• IP address/netmask pair — Netmask expressions can also be used as a pattern to control access to
a particular group of IP addresses. The following example applies to any host with an address range
of 192.168.0.0 through 192.168.1.255:
ALL : 192.168.0.0/255.255.254.0

Important

When working in the IPv4 address space, the address/prefix length (prefixlen) pair declarations
are not supported. Only IPv6 rules can use this format.

• [IPv6 address]/prefixlen pair — [net]/prefixlen pairs can also be used as a pattern to control access
to a particular group of IPv6 addresses. The following example would apply to any host with an
address range of 3ffe:505:2:1:: through 3ffe:505:2:1:ffff:ffff:ffff:ffff:
ALL : [3ffe:505:2:1::]/64

• The asterisk (*) — Asterisks can be used to match entire groups of hostnames or IP addresses, as
long as they are not mixed in a client list containing other types of patterns. The following example
would apply to any host within the example.com domain:
ALL : *.example.com

• The slash (/) — If a client list begins with a slash, it is treated as a file name. This is useful if rules
specifying large numbers of hosts are necessary. The following example refers TCP wrappers to the
/etc/telnet.hosts file for all Telnet connections:
in.telnetd : /etc/telnet.hosts

Other, lesser used, patterns are also accepted by TCP wrappers. Refer to the hosts_access man 5
page for more information.

Warning

Be very careful when using hostnames and domain names. Attackers can use a variety of tricks to
circumvent accurate name resolution. In addition, disruption in DNS service prevents even authorized
users from using network services.

It is, therefore, best to use IP addresses whenever possible.

17.2.1.3. Portmap and TCP Wrappers
When creating access control rules for portmap, do not use hostnames as portmap’s implementation
of TCP wrappers does not support host look ups. For this reason, only use IP addresses or the keyword
ALL when specifying hosts in hosts.allow or hosts.deny.

In addition, changes to portmap access control rules may not take affect immediately without restart-
ing the portmap service.

268 Chapter 17. TCP Wrappers and xinetd

Widely used services, such as NIS and NFS, depend on portmap to operate, so be aware of these
limitations.

17.2.1.4. Operators
At present, access control rules accept one operator, EXCEPT. It can be used in both the daemon list
and the client list of a rule.

The EXCEPT operator allows specific exceptions to broader matches within the same rule.

In the following example from a hosts.allow file, all example.com hosts are allowed to connect
to all services except cracker.example.com:

ALL: .example.com EXCEPT cracker.example.com

In the another example from a hosts.allow file, clients from the 192.168.0.x network can use all
services except for FTP:

ALL EXCEPT vsftpd: 192.168.0.

Note

Organizationally, it is often easier to avoid using EXCEPT operators. This allows other administrators to
quickly scan the appropriate files to see what hosts are allowed or denied access to services, without
having to sort through EXCEPT operators.

17.2.2. Option Fields
In addition to basic rules allowing and denying access, the Red Hat Enterprise Linux implementation
of TCP wrappers supports extensions to the access control language through option fields. By using
option fields within hosts access rules, administrators can accomplish a variety of tasks such as altering
log behavior, consolidating access control, and launching shell commands.

17.2.2.1. Logging
Option fields let administrators easily change the log facility and priority level for a rule by using the
severity directive.

In the following example, connections to the SSH daemon from any host in the example.com domain
are logged to the default authpriv syslog facility (because no facility value is specified) with a
priority of emerg:

sshd : .example.com : severity emerg

It is also possible to specify a facility using the severity option. The following example logs any
SSH connection attempts by hosts from the example.com domain to the local0 facility with a
priority of alert:

sshd : .example.com : severity local0.alert

Chapter 17. TCP Wrappers and xinetd 269

Note

In practice, this example does not work until the syslog daemon (syslogd) is configured to log to
the local0 facility. Refer to the syslog.conf man page for information about configuring custom log
facilities.

17.2.2.2. Access Control
Option fields also allow administrators to explicitly allow or deny hosts in a single rule by adding the
allow or deny directive as the final option.

For instance, the following two rules allow SSH connections from client-1.example.com, but
deny connections from client-2.example.com:

sshd : client-1.example.com : allow
sshd : client-2.example.com : deny

By allowing access control on a per-rule basis, the option field allows administrators to consolidate
all access rules into a single file: either hosts.allow or hosts.deny. Some consider this an easier
way of organizing access rules.

17.2.2.3. Shell Commands
Option fields allow access rules to launch shell commands through the following two directives:

• spawn — Launches a shell command as a child process. This option directive can perform tasks
like using /usr/sbin/safe_finger to get more information about the requesting client or create
special log files using the echo command.

In the following example, clients attempting to access Telnet services from the example.com do-
main are quietly logged to a special file:
in.telnetd : .example.com \

: spawn /bin/echo ‘/bin/date‘ from %h>>/var/log/telnet.log \
: allow

• twist — Replaces the requested service with the specified command. This directive is often used
to set up traps for intruders (also called "honey pots"). It can also be used to send messages to
connecting clients. The twist directive must occur at the end of the rule line.

In the following example, clients attempting to access FTP services from the example.com domain
are sent a message via the echo command:
vsftpd : .example.com \
: twist /bin/echo "421 Bad hacker, go away!"

For more information about shell command options, refer to the hosts_options man page.

17.2.2.4. Expansions
Expansions, when used in conjunction with the spawn and twist directives, provide information
about the client, server, and processes involved.

Below is a list of supported expansions:

• %a — Supplies the client’s IP address.

270 Chapter 17. TCP Wrappers and xinetd

• %A — Supplies the server’s IP address.

• %c — Supplies a variety of client information, such as the username and hostname, or the username
and IP address.

• %d — Supplies the daemon process name.

• %h — Supplies the client’s hostname (or IP address, if the hostname is unavailable).

• %H — Supplies the server’s hostname (or IP address, if the hostname is unavailable).

• %n — Supplies the client’s hostname. If unavailable, unknown is printed. If the client’s hostname
and host address do not match, paranoid is printed.

• %N — Supplies the server’s hostname. If unavailable, unknown is printed. If the server’s hostname
and host address do not match, paranoid is printed.

• %p — Supplies the daemon process ID.

• %s —Supplies various types of server information, such as the daemon process and the host or IP
address of the server.

• %u — Supplies the client’s username. If unavailable, unknown is printed.

The following sample rule uses an expansion in conjunction with the spawn command to identify the
client host in a customized log file.

When connections to the SSH daemon (sshd) are attempted from a host in the example.com do-
main, execute the echo command to log the attempt, including the client hostname (by using the %h
expansion), to a special file:

sshd : .example.com \
: spawn /bin/echo ‘/bin/date‘ access denied to %h>>/var/log/sshd.log \
: deny

Similarly, expansions can be used to personalize messages back to the client. In the following example,
clients attempting to access FTP services from the example.com domain are informed that they have
been banned from the server:

vsftpd : .example.com \
: twist /bin/echo "421 %h has been banned from this server!"

For a full explanation of available expansions, as well as additional access control options, refer
to section 5 of the man pages for hosts_access (man 5 hosts_access) and the man page for
hosts_options.

For additional information about TCP wrappers, refer to Section 17.5 Additional Resources. For more
information about how to secure TCP wrappers, refer to the chapter titled Server Security in the Red
Hat Enterprise Linux Security Guide.

17.3. xinetd
The xinetd daemon is a TCP wrapped super service which controls access to a subset of popular
network services including FTP, IMAP, and Telnet. It also provides service-specific configuration
options for access control, enhanced logging, binding, redirection, and resource utilization control.

When a client host attempts to connect to a network service controlled by xinetd, the super service
receives the request and checks for any TCP wrappers access control rules. If access is allowed,
xinetd verifies that the connection is allowed under its own access rules for that service and that the
service is not consuming more than its alloted amount of resources or is in breach of any defined rules.
It then starts an instance of the requested service and passes control of the connection to it. Once the

Chapter 17. TCP Wrappers and xinetd 271

connection is established, xinetd does not interfere further with communication between the client
host and the server.

17.4. xinetd Configuration Files
The configuration files for xinetd are as follows:

• /etc/xinetd.conf — The global xinetd configuration file.

• /etc/xinetd.d/ — The directory containing all service-specific files.

17.4.1. The /etc/xinetd.conf File
The /etc/xinetd.conf file contains general configuration settings which effect every service under
xinetd’s control. It is read once when the xinetd service is started, so for configuration changes to
take effect, the administrator must restart the xinetd service. Below is a sample /etc/xinetd.conf
file:

defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST
cps = 25 30

}
includedir /etc/xinetd.d

These lines control the following aspects of xinetd:

• instances — Sets the maximum number of requests xinetd can handle at once.

• log_type — Configures xinetd to use the authpriv log facility, which writes log entries to the
/var/log/secure file. Adding a directive such as FILE /var/log/xinetdlog would create a
custom log file called xinetdlog in the /var/log/ directory.

• log_on_success — Configures xinetd to log if the connection is successful. By default, the
remote host’s IP address and the process ID of server processing the request are recorded.

• log_on_failure— Configures xinetd to log if there is a connection failure or if the connection
is not allowed.

• cps — Configures xinetd to allow no more than 25 connections per second to any given service.
If this limit is reached, the service is retired for 30 seconds.

• includedir /etc/xinetd.d/ — Includes options declared in the service-specific
configuration files located in the /etc/xinetd.d/ directory. Refer to
Section 17.4.2 The /etc/xinetd.d/ Directory for more information.

Note

Often, both the log_on_success and log_on_failure settings in /etc/xinetd.conf are further
modified in the service-specific log files. For this reason, more information may appear in a given ser-
vice’s log than the /etc/xinetd.conf file may indicate. Refer to Section 17.4.3.1 Logging Options
for additional information.

272 Chapter 17. TCP Wrappers and xinetd

17.4.2. The /etc/xinetd.d/ Directory
The /etc/xinetd.d/ directory contains the configuration files for each service managed by xinetd
and the names of the files correlate to the service. As with xinetd.conf, this directory is read only
when the xinetd service is started. For any changes to take effect, the administrator must restart the
xinetd service.

The format of files in the /etc/xinetd.d/ directory use the same conventions as
/etc/xinetd.conf. The primary reason the configuration for each service is stored in a separate
file is to make customization easier and less likely to effect other services.

To gain an understanding of how these files are structured, consider the /etc/xinetd.d/telnet
file:

service telnet
{

flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
disable = yes

}

These lines control various aspects of the telnet service:

• service — Defines the service name, usually one listed in the /etc/services file.

• flags — Sets any of a number of attributes for the connection. REUSE instructs xinetd to reuse
the socket for a Telnet connection.

• socket_type — Sets the network socket type to stream.

• wait — Defines whether the service is single-threaded (yes) or multi-threaded (no).

• user — Defines what user ID the process runs under.

• server — Defines the binary executable to be launched.

• log_on_failure — Defines logging parameters for log_on_failure in addition to those al-
ready defined in xinetd.conf.

• disable — Defines whether the service is active.

17.4.3. Altering xinetd Configuration Files
There are a large assortment of directives available for xinetd protected services. This section high-
lights some of the more commonly used options.

17.4.3.1. Logging Options
The following logging options are available for both /etc/xinetd.conf and the service-specific
configuration files within the /etc/xinetd.d/ directory.

Below is a list of some of the more commonly used logging options:

• ATTEMPT — Logs the fact that a failed attempt was made (log_on_failure).

• DURATION — Logs the length of time the service is used by a remote system (log_on_success).

Chapter 17. TCP Wrappers and xinetd 273

• EXIT — Logs the exit status or termination signal of the service (log_on_success).

• HOST — Logs the remote host’s IP address (log_on_failure and log_on_success).

• PID — Logs the process ID of the server receiving the request (log_on_success).

• USERID — Logs the remote user using the method defined in RFC 1413 for all multi-threaded
stream services (log_on_failure and log_on_success).

For a complete list of logging options, refer to the xinetd.conf man page.

17.4.3.2. Access Control Options
Users of xinetd services can choose to use the TCP wrappers hosts access rules, provide access con-
trol via the xinetd configuration files, or a mixture of both. Information concerning the use of TCP
wrappers hosts access control files can be found in Section 17.2 TCP Wrappers Configuration Files.

This section discusses using xinetd to control access to services.

Note

Unlike TCP wrappers, changes to access control only take effect if the xinetd administrator restarts
the xinetd service.

Also, unlike TCP wrappers, access control through xinetd only affects services controlled by xinetd.

The xinetd hosts access control differs from the method used by TCP wrappers. While TCP wrappers
places all of the access configuration within two files, /etc/hosts.allow and /etc/hosts.deny,
xinetd’s access control is found in each service’s configuration file within the /etc/xinetd.d/
directory.

The following hosts access options are supported by xinetd:

• only_from — Allows only the specified hosts to use the service.

• no_access — Blocks listed hosts from using the service.

• access_times — Specifies the time range when a particular service may be used. The time range
must be stated in 24-hour format notation, HH:MM-HH:MM.

The only_from and no_access options can use a list of IP addresses or host names, or can specify
an entire network. Like TCP wrappers, combining xinetd access control with the enhanced logging
configuration can increase security by blocking requests from banned hosts while verbosely recording
each connection attempt.

For example, the following /etc/xinetd.d/telnet file can be used to block Telnet access from a
particular network group and restrict the overall time range that even allowed users can log in:

service telnet
{

disable = no
flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
no_access = 10.0.1.0/24
log_on_success += PID HOST EXIT

274 Chapter 17. TCP Wrappers and xinetd

access_times = 09:45-16:15
}

In this example, when a client system from the 10.0.1.0/24 network, such as 10.0.1.2, tries to access
the Telnet service, it receives a message stating the following message:

Connection closed by foreign host.

In addition, their login attempts are logged in /var/log/secure as follows:

May 15 17:38:49 boo xinetd[16252]: START: telnet pid=16256 from=10.0.1.2
May 15 17:38:49 boo xinetd[16256]: FAIL: telnet address from=10.0.1.2
May 15 17:38:49 boo xinetd[16252]: EXIT: telnet status=0 pid=16256

When using TCP wrappers in conjunction with xinetd access controls, it is important to understand
the relationship between the two access control mechanisms.

The following is the order of operations followed by xinetd when a client requests a connection:

1. The xinetd daemon accesses the TCP wrappers hosts access rules through a libwrap.a li-
brary call. If a deny rule matches the client host, the connection is dropped. If an allow rule
matches the client host, the connection is passed on to xinetd.

2. The xinetd daemon checks its own access control rules both for the xinetd service and the
requested service. If a deny rule matches the client host the connection is dropped. Otherwise,
xinetd starts an instance of the requested service and passes control of the connection to it.

Important

Care should be taken when using TCP wrappers access controls in conjunction with xinetd access
controls. Misconfiguration can cause undesired effects.

17.4.3.3. Binding and Redirection Options
The service configuration files for xinetd support binding the service to an IP address and redirecting
incoming requests for that service to another IP address, hostname, or port.

Binding is controlled with the bind option in the service-specific configuration files and links the
service to one IP address on the system. Once configured, the bind option only allows requests for
the proper IP address to access the service. In this way, different services can be bound to different
network interfaces based on need.

This is particularly useful for systems with multiple network adapters or with multiple IP addresses
configured. On such a system, insecure services, like Telnet, can be configured to listen only on the
interface connected to a private network and not to the interface connected with the Internet.

The redirect option accepts an IP address or hostname followed by a port number. It configures
the service to redirect any requests for this service to the specified host and port number. This feature
can be used to point to another port number on the same system, redirect the request to different IP
address on the same machine, shift the request to a totally different system and port number, or any
combination of these options. In this way, a user connecting to certain service on a system may be
rerouted to another system with no disruption.

The xinetd daemon is able to accomplish this redirection by spawning a process that stays alive for
the duration of the connection between the requesting client machine and the host actually providing
the service, transferring data between the two systems.

Chapter 17. TCP Wrappers and xinetd 275

But the advantages of the bind and redirect options are most clearly evident when they are used
together. By binding a service to a particular IP address on a system and then redirecting requests for
this service to a second machine that only the first machine can see, an internal system can be used
to provide services for a totally different network. Alternatively, these options can be used to limit the
exposure of a particular service on a multi-homed machine to a known IP address, as well as redirect
any requests for that service to another machine specially configured for that purpose.

For example, consider a system that is used as a firewall with this setting for its Telnet service:

service telnet
{

socket_type = stream
wait = no
server = /usr/sbin/in.telnetd
log_on_success += DURATION USERID
log_on_failure += USERID
bind = 123.123.123.123
redirect = 10.0.1.13 23

}

The bind and redirect options in this file ensures that the Telnet service on the machine is bound
to the external IP address (123.123.123.123), the one facing the Internet. In addition, any requests
for Telnet service sent to 123.123.123.123 are redirected via a second network adapter to an internal
IP address (10.0.1.13) that only the firewall and internal systems can access. The firewall then send
the communication between the two systems, and the connecting system thinks it is connected to
123.123.123.123 when it is actually connected to a different machine.

This feature is particularly useful for users with broadband connections and only one fixed IP address.
When using Network Address Translation (NAT), the systems behind the gateway machine, which
are using internal-only IP addresses, are not available from outside the gateway system. However,
when certain services controlled by xinetd are configured with the bind and redirect options,
the gateway machine can act as a proxy between outside systems and a particular internal machine
configured to provide the service. In addition, the various xinetd access control and logging options
are also available for additional protection.

17.4.3.4. Resource Management Options
The xinetd daemon can add a basic level of protection from a Denial of Service (DoS) attacks.
Below is a list of directives which can aid in limiting the effectiveness of such attacks:

• per_source — Defines the maximum number of instances for a service per source IP address. It
accepts only integers as an argument and can be used in both xinetd.conf and in the service-
specific configuration files in the xinetd.d/ directory.

• cps— Defines the maximum of connections per second. This directive takes two integer arguments
separated by white space. The first is the maximum number of connections allowed to the service
per second. The second is the number of seconds xinetd must wait before re-enabling the service.
It accepts only integers as an argument and can be used in both xinetd.conf and in the service-
specific configuration files in the xinetd.d/ directory.

• max_load — Defines the CPU usage threshold for a service. It accepts a floating point number
argument.

There are more resource management options available for xinetd. Refer to the chapter titled
Server Security in the Red Hat Enterprise Linux Security Guide for more information, as well as the
xinetd.conf man page.

276 Chapter 17. TCP Wrappers and xinetd

17.5. Additional Resources
Additional information concerning TCP wrappers and xinetd is available from system documenta-
tion and on the Internet.

17.5.1. Installed Documentation
The bundled documentation on your system is a good place to start looking for additional TCP Wrap-
pers, xinetd, and access control configuration options.

• /usr/share/doc/tcp_wrappers-<version>/ — This directory contains a README file that
discusses how TCP wrappers work and the various hostname and host address spoofing risks that
exist.

• /usr/share/doc/xinetd-<version>/— This directory contains a README file that discusses
aspects of access control and a sample.conf file with various ideas for modifying service-specific
configuration files in the /etc/xinetd.d/ directory.

• TCP wrappers and xinetd related man pages — There are a number of man pages for the various
applications and configuration files involved with TCP wrappers and xinetd. The following lists
some of the more important man pages.

Server Applications

• man xinetd — The man page for the xinetd super service daemon.

Configuration Files

• man 5 hosts_access — The man page for the TCP wrappers hosts access control files.

• man hosts_options — The man page for the TCP wrappers options fields.

• man xinetd.conf — The man page listing xinetd configuration options.

17.5.2. Useful Websites

• http://www.xinetd.org/ — The home of xinetd, containing sample configuration files, a full listing
of features, and an informative FAQ.

• http://www.macsecurity.org/resources/xinetd/tutorial.shtml — A thorough tutorial that discusses
many different ways to tweak default xinetd configuration files to meet specific security goals.

17.5.3. Related Books

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — Provides an overview of workstation,
server, and network security with specific suggestions regarding TCP wrappers and xinetd.

Chapter 17. TCP Wrappers and xinetd 277

• Hacking Linux Exposed by Brian Hatch, James Lee, and George Kurtz; Osbourne/McGraw-Hill —
An excellent security resource with featuring information about TCP wrappers and xinetd.

278 Chapter 17. TCP Wrappers and xinetd

Chapter 18.
iptables

Included with Red Hat Enterprise Linux are advanced tools for network packet filtering — the process
of controlling network packets as they enter, move through, and exit the network stack within the
kernel. Kernel versions prior to 2.4 relied on ipchains for packet filtering and used lists of rules
applied to packets at each step of the filtering process. The introduction of the 2.4 kernel brought with
it iptables (also called netfilter), which is similar to ipchains but greatly expands the scope and
control available for filtering network packets.

This chapter focuses on packet filtering basics, defines the differences between ipchains and
iptables, explains various options available with iptables commands, and explains how filtering
rules can be preserved between system reboots.

For instructions on constructing iptables rules or setting up a firewall based on these rules, refer to
Section 18.7 Additional Resources.

Warning

The default firewall mechanism under the 2.4 and newer kernels is iptables, but iptables cannot
be used if ipchains are already running. If ipchains is present at boot time, the kernel issues an
error and fails to start iptables.

The functionality of ipchains is not affected by these errors.

18.1. Packet Filtering
The Linux kernel has the built-in ability to filter packets, allowing some of them to be received by or
pass through the system while stopping others. The kernel’s netfilter has three built-in tables or rules
lists. They are as follows:

• filter — The default table for handling network packets.

• nat— Used to alter packets that create a new connection and used for Network Address Translation
(NAT).

• mangle — Used for specific types of packet alteration.

Tip

In addition to these built in tables, specialized tables can be created and stored in the
/lib/modules/<kernel-version>/kernel/net/ipv4/netfilter/ directory (where
<kernel-version> corresponds to the version kernel number).

Each table has a group of built-in chains which correspond to the actions performed on the packet by
the netfilter.

The built-in chains for the filter table are as follows:

• INPUT — Applies to network packets that are targeted for the host.

280 Chapter 18. iptables

• OUTPUT — Applies to locally-generated network packets.

• FORWARD — Applies to network packets routed through the host.

The built-in chains for the nat table are as follows:

• PREROUTING — Alters network packets when they arrive.

• OUTPUT — Alters locally-generated network packets before they are sent out.

• POSTROUTING — Alters network packets before they are sent out.

The built-in chains for the mangle table are as follows:

• INPUT — Alters network packets targeted for the host.

• OUTPUT — Alters locally-generated network packets before they are sent out.

• FORWARD — Alters network packets routed through the host.

• PREROUTING — Alters incoming network packets before they are routed.

• POSTROUTING — Alters network packets before they are sent out.

Every network packet received by or sent from a Linux system is subject to at least one table. However,
a packet may be subjected to multiple rules within each table before emerging at the end of the chain.
The structure and purpose of these rules may vary, but they usually seek to identify a packet coming
from or going to a particular IP address, or set of addresses, when using a particular protocol and
network service.

Note

Do not use fully qualified domain names in firewall rules that are saved in the
/etc/sysconfig/iptables or /etc/sysconfig/ip6tables files. In the following example:
iptables -A FORWARD -s example.com -i eth0 -j DROP example.com is invalid because the

iptables service starts before any DNS related services at boot time, which results in an error.
Only IP addresses are valid in creating firewall rules.

Regardless of their destination, when packets match a particular rule in one of the tables, a target or
action is applied to them. If the rule specifies an ACCEPT target for a matching packet, the packet skips
the rest of the rule checks and is allowed to continue to its destination. If a rule specifies a DROP target,
that packet is refused access to the system and nothing is sent back to the host that sent the packet.
If a rule specifies a QUEUE target, the packet is passed to user-space. If a rule specifies the optional
REJECT target, the packet is dropped, but an error packet is sent to the packet’s originator.

Every chain has a default policy to ACCEPT, DROP, REJECT, or QUEUE. If none of the rules in the chain
apply to the packet, then the packet is dealt with in accordance with the default policy.

The iptables command configures these tables, as well as sets up new tables if necessary.

18.2. Differences between iptables and ipchains
At first glance, ipchains and iptables appear to be quite similar. Both methods of packet filtering
use chains of rules operating within the Linux kernel to decide what to do with packets that match the
specified rule or set of rules. However, iptables offers a more extensible way of filtering packets,
giving the administrator a greater amount of control without building a great deal of complexity into
the system.

Chapter 18. iptables 281

Specifically, users comfortable with ipchains should be aware of the following significant differ-
ences between ipchains and iptables before attempting to use iptables:

• Under iptables, each filtered packet is processed using rules from only one chain rather than
multiple chains. For instance, a FORWARD packet coming into a system using ipchains would
have to go through the INPUT, FORWARD, and OUTPUT chains to move along to its destination.
However, iptables only sends packets to the INPUT chain if they are destined for the local
system and only sends them to the OUTPUT chain if the local system generated the packets. For
this reason, it is important to place the rule designed to catch a particular packet within the rule that
actually handles the packet.

• The DENY target has been changed to DROP. In ipchains, packets that matched a rule in a chain
could be directed to the DENY target. This target must be changed to DROP under iptables.

• Order matters when placing options in a rule. With ipchains, the order of the rule options does
not matter. The iptables command uses stricter syntax. In iptables commands, the protocol
(ICMP, TCP, or UDP) must be specified before the source or destination ports.

• When specifying network interfaces to be used with a rule, you must only use incoming interfaces
(-i option) with INPUT or FORWARD chains and outgoing interfaces (-o option) with FORWARD
or OUTPUT chains. This is necessary because OUTPUT chains are no longer used by incoming
interfaces, and INPUT chains are not seen by packets moving through outgoing interfaces.

This is not a comprehensive list of the changes, given that iptables is a fundamentally rewritten
network filter. For more specific information, refer to the Linux Packet Filtering HOWTO referenced
in Section 18.7 Additional Resources.

18.3. Options Used within iptables Commands
Rules for filtering packets are put in place using the iptables command. The following aspects of
the packet are most often used as criteria:

• Packet Type — Specifies the type of packets the command filters.

• Packet Source/Destination — Specifies which packets the command filters based on the source or
destination of the packet.

• Target — Specifies what action is taken on packets matching the above criteria.

For more information on specific options which address these aspects of a packet, refer to
Section 18.3.4 iptables Match Options and Section 18.3.5 Target Options.

The options used with given iptables rules must be grouped logically, based on the purpose and con-
ditions of the overall rule, for the rule to be valid. The remainder of this section explains commonly-
used options for the iptables command.

18.3.1. Structure of iptables Options
Many iptables commands have the following structure:

iptables [-t <table-name>] <command> <chain-name> <parameter-1> \
<option-1> <parameter-n> <option-n>

The <table-name> option allows the user to select a table other than the default filter
table to use with the command. The <command> option dictates a specific action to perform,
such as appending or deleting the rule specified by the <chain-name> option. Following the
<chain-name> are pairs of parameters and options that define what happens when a packet
matches the rule.

282 Chapter 18. iptables

When looking at the structure of an iptables command, it is important to remember that, unlike
most other commands, the length and complexity of an iptables command can change based on its
purpose. A command to remove a rule from a chain can be very short, while a command designed to
filter packets from a particular subnet using a variety of specific parameters and options can be rather
lengthy. When creating iptables commands, it is helpful to recognize that some parameters and
options may create the need for other parameters and options to further specify the previous option’s
request. To construct a valid rule, this must continue until every parameter and option that requires
another set of options is satisfied.

Type iptables -h to view a comprehensive list of iptables command structures.

18.3.2. Command Options
Command options instruct iptables to perform a specific action. Only one command option is
allowed per iptables command. With the exception of the help command, all commands are written
in upper-case characters.

The iptables commands are as follows:

• -A — Appends the iptables rule to the end of the specified chain. This is the command used to
add a rule when rule order in the chain does not matter.

• -C — Checks a particular rule before adding it to the user-specified chain. This command can
help you construct complicated iptables rules by prompting you for additional parameters and
options.

• -D — Deletes a rule in a particular chain by number (such as 5 for the fifth rule in a chain). You
can also type the entire rule, and iptables deletes the rule in the chain that matches it.

• -E — Renames a user-defined chain. This does not affect the structure of the table.

• -F — Flushes the selected chain, which effectively deletes every rule in the the chain. If no chain
is specified, this command flushes every rule from every chain.

• -h — Provides a list of command structures, as well as a quick summary of command parameters
and options.

• -I — Inserts a rule in a chain at a point specified by a user-defined integer value. If no number is
specified, iptables places the command at the top of the chain.

Caution

Be aware when using the -A or -I option that the order of the rules within a chain are important
for determining which rules apply to which packets.

• -L — Lists all of the rules in the chain specified after the command. To list all rules in all chains in
the default filter table, do not specify a chain or table. Otherwise, the following syntax should
be used to list the rules in a specific chain in a particular table:
iptables -L <chain-name> -t <table-name>

Additional options for the -L command option, which provide rule numbers and allow more verbose
rule descriptions, are described in Section 18.3.6 Listing Options.

• -N — Creates a new chain with a user-specified name.

• -P — Sets the default policy for the specified chain, so that when packets traverse an entire chain
without matching a rule, they are sent on to the specified target, such as ACCEPT or DROP.

• -R — Replaces a rule in the specified chain. The rule’s number must be specified after the chain’s
name. The first rule in a chain corresponds to rule number one.

• -X — Deletes a user-specified chain. Deleting a built-in chain for any table is not allowed.

Chapter 18. iptables 283

• -Z — Zeros the byte and packet counters in all chains for a table.

18.3.3. iptables Parameter Options
Once certain iptables commands are specified, including those used to add, append, delete, insert,
or replace rules within a particular chain, parameters are required to construct a packet filtering rule.

• -c — Resets the counters for a particular rule. This parameter accepts the PKTS and BYTES options
to specify what counter to reset.

• -d — Sets the destination hostname, IP address, or network of a packet that matches the rule. When
matching a network, the following IP address/netmask formats are supported:

• N.N.N.N/M.M.M.M — Where N.N.N.N is the IP address range and M.M.M.M is the netmask.

• N.N.N.N/M — Where N.N.N.N is the IP address range and M is the bitmask.

• -f — Applies this rule only to fragmented packets.

By using the exclamation point character (!) option after this parameter, only unfragmented packets
are matched.

• -i — Sets the incoming network interface, such as eth0 or ppp0. With iptables, this optional
parameter may only be used with the INPUT and FORWARD chains when used with the filter
table and the PREROUTING chain with the nat and mangle tables.

This parameter also supports the following special options:

• Exclamation point character (!) — Reverses the directive, meaning any specified interfaces are
excluded from this rule.

• Plus character (+) — A wildcard character used to match all interfaces that match the specified
string. For example, the parameter -i eth+ would apply this rule to any Ethernet interfaces but
exclude any other interfaces, such as ppp0.

If the -i parameter is used but no interface is specified, then every interface is affected by the rule.

• -j — Jumps to the specified target when a packet matches a particular rule. Valid targets to use after
the -j option include standard options (ACCEPT, DROP, QUEUE, and RETURN) as well as extended
options that are available through modules loaded by default with the Red Hat Enterprise Linux
iptables RPM package, such as LOG, MARK, and REJECT, among others. Refer to the iptables
man page for more information about these and other targets.

It is also possible to direct a packet matching this rule to a user-defined chain outside of the current
chain so that other rules can be applied to the packet.

If no target is specified, the packet moves past the rule with no action taken. However, the counter
for this rule increases by one.

• -o — Sets the outgoing network interface for a rule and may only be used with OUTPUT and
FORWARD chains in the filter table, and the POSTROUTING chain in the nat and mangle
tables. This parameter’s options are the same as those of the incoming network interface parameter
(-i).

• -p — Sets the IP protocol for the rule, which can be either icmp, tcp, udp, or all, to match every
supported protocol. In addition, any protocols listed in /etc/protocols may also be used. If this
option is omitted when creating a rule, the all option is the default.

• -s— Sets the source for a particular packet using the same syntax as the destination (-d) parameter.

284 Chapter 18. iptables

18.3.4. iptables Match Options
Different network protocols provide specialized matching options which can be configured to match
a particular packet using that protocol. However, the protocol must first be specified in the iptables
command. For example -p tcp <protocol-name> (where <protocol-name> is the target
protocol), makes options for the specified protocol available.

18.3.4.1. TCP Protocol
These match options are available for the TCP protocol (-p tcp):

• --dport — Sets the destination port for the packet. Use either a network service name (such as
www or smtp), port number, or range of port numbers to configure this option. To browse the names
and aliases of network services and the port numbers they use, view the /etc/services file. The
--destination-port match option is synonymous with --dport.

To specify a range of port numbers, separate the two numbers with a colon (:), such as -p tcp
--dport 3000:3200. The largest acceptable valid range is 0:65535.

Use an exclamation point character (!) after the --dport option to match all packets which do not
use that network service or port.

• --sport — Sets the source port of the packet using the same options as --dport. The
--source-port match option is synonymous with --sport.

• --syn — Applies to all TCP packets designed to initiate communication, commonly called SYN
packets. Any packets that carry a data payload are not touched. Placing an exclamation point char-
acter (!) as a flag after the --syn option causes all non-SYN packets to be matched.

• --tcp-flags — Allows TCP packets with specific set bits, or flags, to match a rule. The
--tcp-flags match option accepts two parameters. The first parameter is the mask, which sets
the flags to be examined in the packet. The second parameter refers to the flag that must be set to
match.

The possible flags are:

• ACK

• FIN

• PSH

• RST

• SYN

• URG

• ALL

• NONE

For example, an iptables rule which contains -p tcp --tcp-flags ACK,FIN,SYN SYN only
matches TCP packets that have the SYN flag set and the ACK and FIN flags unset.

Using the exclamation point character (!) after --tcp-flags reverses the effect of the match
option.

• --tcp-option — Attempts to match with TCP-specific options that can be set within a particular
packet. This match option can also be reversed with the exclamation point character (!).

Chapter 18. iptables 285

18.3.4.2. UDP Protocol
These match options are available for the UDP protocol (-p udp):

• --dport — Specifies the destination port of the UDP packet, using the service name, port number,
or range of port numbers. The --destination-portmatch option is synonymous with --dport.

• --sport — Specifies the source port of the UDP packet, using the service name, port number, or
range of port numbers. The --source-port match option is synonymous with --sport.

18.3.4.3. ICMP Protocol
The following match options are available for the Internet Control Message Protocol (ICMP) (-p
icmp):

• --icmp-type — Sets the name or number of the ICMP type to match with the rule. A list of valid
ICMP names can be retrieved by typing the iptables -p icmp -h command.

18.3.4.4. Additional Match Option Modules
Additional match options are also available through modules loaded by the iptables command.
To use a match option module, load the module by name using the -m option, such as -m
<module-name> (replacing <module-name> with the name of the module).

A large number of modules are available by default. It is even possible to create modules that provide
additional functionality.

The following is a partial list of the most commonly used modules:

• limit module — Places limits on how many packets are matched to a particular rule. This is espe-
cially beneficial when used in conjunction with the LOG target as it can prevent a flood of matching
packets from filling up the system log with repetitive messages or using up system resources. Refer
to Section 18.3.5 Target Options for more information about the LOG target.

The limit module enables the following options:

• --limit — Sets the number of matches for a particular range of time, specified with a number
and time modifier arranged in a <number>/<time> format. For example, using --limit
5/hour only lets a rule match 5 times in a single hour.

If a number and time modifier are not used, the default value of 3/hour is assumed.

• --limit-burst — Sets a limit on the number of packets able to match a rule at one time. This
option should be used in conjunction with the --limit option, and it accepts a number to set
the burst threshold.

If no number is specified, only five packets are initially able to match the rule.

• state module — Enables state matching.

The state module enables the following options:

• --state — match a packet with the following connection states:

• ESTABLISHED — The matching packet is associated with other packets in an established con-
nection.

• INVALID — The matching packet cannot be tied to a known connection.

286 Chapter 18. iptables

• NEW — The matching packet is either creating a new connection or is part of a two-way con-
nection not previously seen.

• RELATED — The matching packet is starting a new connection related in some way to an
existing connection.

These connection states can be used in combination with one another by separating them with
commas, such as -m state --state INVALID,NEW.

• mac module — Enables hardware MAC address matching.

The mac module enables the following option:

• --mac-source — Matches a MAC address of the network interface card that sent the packet.
To exclude a MAC address from a rule, place an exclamation point character (!) after the
--mac-source match option.

To view other match options available through modules, refer to the iptables man page.

18.3.5. Target Options
Once a packet has matched a particular rule, the rule can direct the packet to a number of different
targets that decide its fate and, possibly, take additional actions. Each chain has a default target, which
is used if none of the rules on that chain match a packet or if none of the rules which match the packet
specify a target.

The following are the standard targets:

• <user-defined-chain> — Replace <user-defined-chain> with the name of a user-
defined chain within the table. This target passes the packet to the target chain.

• ACCEPT — Allows the packet to successfully move on to its destination or another chain.

• DROP — Drops the packet without responding to the requester. The system that sent the packet is
not notified of the failure.

• QUEUE — The packet is queued for handling by a user-space application.

• RETURN— Stops checking the packet against rules in the current chain. If the packet with a RETURN
target matches a rule in a chain called from another chain, the packet is returned to the first chain to
resume rule checking where it left off. If the RETURN rule is used on a built-in chain and the packet
cannot move up to its previous chain, the default target for the current chain decides what action to
take.

In addition to these standard targets, various other targets may be used with extensions
called target modules. For more information about match option modules, refer to
Section 18.3.4.4 Additional Match Option Modules.

There are many extended target modules, most of which only apply to specific tables or situations. A
couple of the most popular target modules included by default in Red Hat Enterprise Linux are:

• LOG — Logs all packets that match this rule. Since the packets are logged by the kernel, the
/etc/syslog.conf file determines where these log entries are written. By default, they are placed
in the /var/log/messages file.

Additional options can be used after the LOG target to specify the way in which logging occurs:

• --log-level — Sets the priority level of a logging event. A list of priority levels can be found
within the syslog.conf man page.

Chapter 18. iptables 287

• --log-ip-options — Logs any options set in the header of a IP packet.

• --log-prefix — Places a string of up to 29 characters before the log line when it is written.
This is useful for writing syslog filters for use in conjunction with packet logging.

• --log-tcp-options — Logs any options set in the header of a TCP packet.

• --log-tcp-sequence — Writes the TCP sequence number for the packet in the log.

• REJECT — Sends an error packet back to the remote system and drops the packet.

The REJECT target accepts --reject-with <type> (where <type> is the rejection type)
allowing more detailed information to be sent back with the error packet. The message
port-unreachable is the default <type> error given if no other option is used. For a full list
of <type> options, refer to the iptables man page.

Other target extensions, including several that are useful for IP masquerading using the nat table or
with packet alteration using the mangle table, can be found in the iptables man page.

18.3.6. Listing Options
The default list command, iptables -L, provides a very basic overview of the default filter table’s
current chains. Additional options provide more information:

• -v — Displays verbose output, such as the number of packets and bytes each chain has seen, the
number of packets and bytes each rule has matched, and which interfaces apply to a particular rule.

• -x — Expands numbers into their exact values. On a busy system, the number of packets and
bytes seen by a particular chain or rule may be abbreviated using K (thousands), M (millions), and G
(billions) at the end of the number. This option forces the full number to be displayed.

• -n — Displays IP addresses and port numbers in numeric format, rather than the default hostname
and network service format.

• --line-numbers — Lists rules in each chain next to their numeric order in the chain. This option
is useful when attempting to delete the specific rule in a chain or to locate where to insert a rule
within a chain.

• -t — Specifies a table name.

18.4. Saving iptables Rules
Rules created with the iptables command are stored in memory. If the system is restarted before
saving the iptables rule set, all rules are lost. For netfilter rules to persist through system reboot,
they need to be saved. To do this, log in as root and type:

/sbin/service iptables save

This executes the iptables initscript, which runs the /sbin/iptables-save program and
writes the current iptables configuration to /etc/sysconfig/iptables. The existing
/etc/sysconfig/iptables file is saved as /etc/sysconfig/iptables.save.

The next time the system boots, the iptables init script reapplies the rules saved in
/etc/sysconfig/iptables by using the /sbin/iptables-restore command.

While it is always a good idea to test a new iptables rule before committing it to the
/etc/sysconfig/iptables file, it is possible to copy iptables rules into this file from another

288 Chapter 18. iptables

system’s version of this file. This provides a quick way to distribute sets of iptables rules to
multiple machines.

Important

If distributing the /etc/sysconfig/iptables file to other machines, type /sbin/service iptables
restart for the new rules to take effect.

18.5. iptables Control Scripts
There are two basic methods for controlling iptables under Red Hat Enterprise Linux:

• Security Level Configuration Tool (system-config-securitylevel) — A graphical inter-
face for creating, activating, and saving basic firewall rules. For more information about how to use
this tool, refer to the chapter titled Basic Firewall Configuration in the Red Hat Enterprise Linux
System Administration Guide.

• /sbin/service iptables <option> — A command issued by the root user capable of
activating, deactivating, and performing other functions of iptables via its initscript. Replace
<option> in the command with one of the following directives:

• start — If a firewall is configured (meaning /etc/sysconfig/iptables exists), all run-
ning iptables are stopped completely and then started using the /sbin/iptables-restore
command. The start directive only works if the ipchains kernel module is not loaded.

• stop— If a firewall is running, the firewall rules in memory are flushed, and all iptables modules
and helpers are unloaded.

If the IPTABLES_SAVE_ON_STOP directive within the /etc/sysconfig/iptables-config
configuration file is changed from its default value to yes, current rules are saved
to /etc/sysconfig/iptables and any existing rules are moved to the file
/etc/sysconfig/iptables.save.

Refer to Section 18.5.1 iptables Control Scripts Configuration File for more information
about the iptables-config file.

• restart — If a firewall is running, the firewall rules in memory are flushed, and the firewall is
started again if it is configured in /etc/sysconfig/iptables. The restart directive only
works if the ipchains kernel module is not loaded.

If the IPTABLES_SAVE_ON_RESTART directive within the
/etc/sysconfig/iptables-config configuration file is changed from its default value to
yes, current rules are saved to /etc/sysconfig/iptables and any existing rules are moved
to the file /etc/sysconfig/iptables.save.

Refer to Section 18.5.1 iptables Control Scripts Configuration File for more information
about the iptables-config file.

• status — Prints to the shell prompt the status of the firewall and a list of all active rules. If no
firewall rules are loaded or configured, it indicates this fact.

A listing of active rules containing IP addresses within rule lists unless the
default value for IPTABLES_STATUS_NUMERIC is changed to no within
the /etc/sysconfig/iptables-config configuration file. This change
would revert status output to domain and hostname information. Refer to
Section 18.5.1 iptables Control Scripts Configuration File for more information about the
iptables-config file.

Chapter 18. iptables 289

• panic — Flushes all firewall rules. The policy of all configured tables is set to DROP.

• save — Saves firewall rules to /etc/sysconfig/iptables using iptables-save. Refer to
Section 18.4 Saving iptables Rules for more information.

Tip

To use the same initscript commands to control netfilter for IPv6, substitute ip6tables for iptables
in the /sbin/service commands listed in this section. For more information about IPv6 and netfilter,
refer to Section 18.6 ip6tables and IPv6 .

18.5.1. iptables Control Scripts Configuration File
The behavior of the iptables initscripts is controlled by the /etc/sysconfig/iptables-config
configuration file. The following is a list of directives contained within this file:

• IPTABLES_MODULES — Specifies a space-separated list of additional iptables modules to load
when a firewall is activated. These can include connection tracking and NAT helpers.

• IPTABLES_MODULES_UNLOAD — Unloads modules on restart and stop. This directive accepts the
following values:

• yes — The default value. This option must be set to achieve a correct state for a firewall restart
or stop.

• no — This option should only be set if there are problems unloading the netfilter modules.

• IPTABLES_SAVE_ON_STOP— Saves current firewall rules to /etc/sysconfig/iptableswhen
the firewall is stopped. This directive accepts the following values:

• yes — Saves existing rules to /etc/sysconfig/iptableswhen the firewall is stopped, mov-
ing the previous version to the /etc/sysconfig/iptables.save file.

• no — The default value. Does not save existing rules when the firewall is stopped.

• IPTABLES_SAVE_ON_RESTART — Saves current firewall rules when the firewall is restarted. This
directive accepts the following values:

• yes— Saves existing rules to /etc/sysconfig/iptableswhen the firewall is restarted, mov-
ing the previous version to the /etc/sysconfig/iptables.save file.

• no — The default value. Does not save existing rules when the firewall is restarted.

• IPTABLES_SAVE_COUNTER — Saves and restores all packet and byte counters in all chains and
rules. This directive accepts the following values:

• yes — Saves the counter values.

• no — The default value. Does not save the counter values.

• IPTABLES_STATUS_NUMERIC — Outputs IP addresses in a status output instead of domain or
hostnames. This directive accepts the following values:

• yes — The default value. Returns only IP addresses within a status output.

290 Chapter 18. iptables

• no — Returns domain or hostnames within a status output.

18.6. ip6tables and IPv6
If the iptables-ipv6 package is installed, netfilter under Red Hat Enterprise Linux can filter
the next-generation IPv6 Internet protocol. The command used to manipulate the IPv6 netfilter is
ip6tables. Most directives for this command are identical to those used for iptables, except the
nat table is not yet supported. This means that it is not yet possible to perform IPv6 network address
translation tasks, such as masquerading and port forwarding.

Saved rules for ip6tables are stored in the /etc/sysconfig/ip6tables file. Old rules saved by
the ip6tables initscripts are saved in the /etc/sysconfig/ip6tables.save file.

The configuration file for ip6tables initscript is /etc/sysconfig/ip6tables-config and
the names for each directive vary slightly. For instance, the iptables-config directive
IPTABLES_MODULES is IP6TABLES_MODULES in the ip6tables-config file.

18.7. Additional Resources
Refer to the following sources for additional information on packet filtering with iptables.

• Red Hat Enterprise Linux Security Guide; Red Hat, Inc. — Contains a chapter about the role of
firewalls within an overall security strategy as well as strategies for constructing firewall rules.

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — Contains a chapter about
configuring firewalls using Security Level Configuration Tool.

18.7.1. Installed Documentation

• man iptables — Contains a description of iptables as well as a comprehensive list of targets,
options, and match extensions.

18.7.2. Useful Websites

• http://www.netfilter.org/ — The home of the netfilter/iptables project. Contains assorted informa-
tion about iptables, including a FAQ addressing specific problems and various helpful guides by
Rusty Russell, the Linux IP firewall maintainer. The HOWTO documents on the site cover subjects
such as basic networking concepts, kernel packet filtering, and NAT configurations.

• http://www.linuxnewbie.org/nhf/Security/IPtables_Basics.html — A basic and general look at the
way packets move through the Linux kernel, plus an introduction to constructing basic iptables
commands.

• http://www.redhat.com/support/resources/networking/firewall.html — This webpage links to a va-
riety of update-to-date packet filter resources.

Chapter 19.
Kerberos

System security and integrity within a network can be unwieldy. It can occupy the time of several
administrators just to keep track of what services are being run on a network and the manner in which
these services are used. Moreover, authenticating users to network services can prove dangerous when
the method used by the protocol is inherently insecure, as evidenced by the transfer of unencrypted
passwords over a network under the FTP and Telnet protocols. Kerberos is a way to eliminate the need
for protocols that allow unsafe methods of authentication, thereby enhancing overall network security.

19.1. What is Kerberos?
Kerberos, a network authentication protocol created by MIT, uses symmetric-key cryptography1 to
authenticate users to network services — eliminating the need to send passwords over the network.
When users authenticate to network services using Kerberos, unauthorized users attempting to gather
passwords by monitoring network traffic are effectively thwarted.

19.1.1. Advantages of Kerberos
Most conventional network services use password-based authentication schemes. Such schemes re-
quire a user to authenticate to a given network server by supplying their username and password.
Unfortunately, the transmission of authentication information for many services is unencrypted. For
such a scheme to be secure, the network has to be inaccessible to outsiders, and all computers and
users on the network must be trusted and trustworthy.

Even if this is the case, once a network is connected to the Internet, it can no longer be assumed
that the network is secure. Any attacker who gains access to the network can use a simple packet
analyzer, also known as a packet sniffer, to intercept usernames and passwords sent in this manner,
compromising user accounts and the integrity of the entire security infrastructure.

The primary design goal of Kerberos is to eliminate the transmission of unencrypted passwords across
the network. If used properly, Kerberos effectively eliminates the threat packet sniffers would other-
wise pose on a network.

19.1.2. Disadvantages of Kerberos
Although Kerberos removes a common and severe security threat, it may be difficult to implement for
a variety of reasons:

• Migrating user passwords from a standard UNIX password database, such as /etc/passwd or
/etc/shadow, to a Kerberos password database can be tedious, as there is no automated mech-
anism to perform this task. For more information, refer to question number 2.23 in the online
Kerberos FAQ:

http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html

• Kerberos has only partial compatibility with the Pluggable Authentication Modules (PAM) system
used by most Red Hat Enterprise Linux servers. For more information about this issue, refer to
Section 19.4 Kerberos and PAM.

1. A system where both the client and the server share a common key that is used to encrypt and decrypt

network communication.

292 Chapter 19. Kerberos

• Kerberos assumes that each user is trusted but is using an untrusted host on an untrusted network.
Its primary goal is to prevent unencrypted passwords from being sent across that network. However,
if anyone other than the proper user has access to the one host that issues tickets used for authenti-
cation — called the key distribution center (KDC) — the entire Kerberos authentication system is
at risk.

• For an application to use Kerberos, its source must be modified to make the appropriate calls into
the Kerberos libraries. Applications modified in this way are considered to be kerberized. For some
applications, this can be quite problematic due to the size of the application or its design. For other
incompatible applications, changes must be made to the way in which the server and client side
communicate. Again, this may require extensive programming. Closed-source applications that do
not have Kerberos support by default are often the most problematic.

• Kerberos is an all or nothing solution. Once Kerberos is used on the network, any unencrypted
passwords transferred to a non-kerberized service is at risk. Thus, the network gains no benefit from
the use of Kerberos. To secure a network with Kerberos, one must either use kerberized versions of
all client/server applications which send unencrypted passwords or not use any such client/server
applications at all.

19.2. Kerberos Terminology
Kerberos has its own terminology to define various aspects of the service. Before learning how ker-
beros works, it is important to learn the following terms.

authentication server (AS)

A server that issues tickets for a desired service which are in turn given to users for access to the
service. The AS responds to requests from clients who do not have or do not send credentials
with a request. It is usually used to gain access to the ticket-granting server (TGS) service by
issuing a ticket-granting ticket (TGT). The AS usually runs on the same host as the KDC.

ciphertext

Encrypted data.

client

An entity on the network (a user, a host, or an application) that can receive a ticket from Kerberos.

credentials

A temporary set of electronic credentials that verify the identity of a client for a particular service.
Also called a ticket.

credential cache or ticket file

A file which contains the keys for encrypting communications between a user and various net-
work services. Kerberos 5 supports a framework for using other cache types, such as shared
memory, but files are more thoroughly supported.

crypt hash

A one way hash used to authenticate users. While more secure than unencrypted data, it is fairly
easy to decrypt for an experienced cracker.

GSS-API

The Generic Security Service Application Program Interface (defined in RFC-2743 published by
The Internet Engineering Task Force) is a set of functions which provide security services. This

Chapter 19. Kerberos 293

API is used by clients and services to authenticate to each other without either program having
specific knowledge of the underlying mechanism. If a network service (such as cyrus-IMAP)
uses GSS-API, it can authenticate using Kerberos.

hash

A text generated number used to ensure that transmitted data has not been tampered with.

key

Data used when encrypting or decrypting other data. Encrypted data cannot be decrypted without
the proper key or extremely good guessing.

key distribution center (KDC)

A service that issues Kerberos tickets, usually run on the same host as the ticket-granting server
(TGS).

keytab (or key table)

A file that includes an unencrypted list of principals and their keys. Servers retrieve the keys they
need from keytab files instead of using kinit. The default keytab file is /etc/krb5.keytab.
The KDC administration server, /usr/kerberos/sbin/kadmind, is the only service that uses
any other file (it uses /var/kerberos/krb5kdc/kadm5.keytab).

kinit

The kinit command allows a principal who has already logged in to obtain and cache the initial
ticket-granting ticket (TGT). For more information about using the kinit command, refer to its
man page.

principal (or principal name)

The principal is the unique name of a user or service allowed to authenticate using Kerberos. A
principal follows the form root[/instance]@REALM. For a typical user, the root is the same
as their login ID. The instance is optional. If the principal has an instance, it is separated from
the root with a forward slash ("/"). An empty string ("") is considered a valid instance (which
differs from the default NULL instance), but using it can be confusing. All principals in a realm
have their own key, which for users is derived from a password or is randomly set for services.

realm

A network that uses Kerberos, composed of one or more servers called KDCs and a potentially
large number of clients.

service

A program accessed over the network.

ticket

A temporary set of electronic credentials that verify the identity of a client for a particular service.
Also called credentials.

ticket-granting server (TGS)

A server that issues tickets for a desired service which are in turn given to users for access to the
service. The TGS usually runs on the same host as the KDC.

ticket-granting ticket (TGT)

A special ticket that allows the client to obtain additional tickets without applying for them from
the KDC.

294 Chapter 19. Kerberos

unencrypted password

A plain text, human-readable password.

19.3. How Kerberos Works
Kerberos differs from username/password authentication methods because instead of authenticating
each user to each network service, it uses symmetric encryption and a trusted third party, a KDC, to
authenticate users to a suite of network services. Once a user authenticates to the KDC, it sends a
ticket specific to that session back the user’s machine and any kerberized services look for the ticket
on the user’s machine rather than asking the user to authenticate using a password.

When a user on a kerberized network logs in to their workstation, their principal is sent to the KDC in
a request for a TGT from AS. This request can be sent by the login program so that it is transparent to
the user or can be sent by the kinit program after the user logs in.

The KDC checks for the principal in its database. If the principal is found, the KDC creates a TGT,
which is encrypted using the user’s key and returned to that user.

The login or kinit program on the client machine then decrypts the TGT using the user’s key (which
it computes from the user’s password). The user’s key is used only on the client machine and is not
sent over the network.

The TGT is set to expire after a certain period of time (usually ten hours) and stored in the client
machine’s credentials cache. An expiration time is set so that a compromised TGT is of use to an
attacker for only a short period of time. Once the TGT is issued, the user does not have to re-enter
their password until the TGT expires or they logout and login again.

Whenever the user needs access to a network service, the client software uses the TGT to request a
new ticket for that specific service from the TGS. The service ticket is then used to authenticate the
user to that service transparently.

Warning

The Kerberos system can be compromised any time any user on the network authenticates against
a non-kerberized service by sending a password in plain text. Use of non-kerberized services is
discouraged. Such services include Telnet and FTP. Use of other encrypted protocols, such as SSH
or SSL secured services, however, is acceptable, though not ideal.

This is only a broad overview of how Kerberos authentication works. Those seeking a more in-depth
look at Kerberos authentication should refer to Section 19.7 Additional Resources.

Note

Kerberos depends on certain network services to work correctly. First, Kerberos requires approximate
clock synchronization between the machines on the network. Therefore, a clock synchronization pro-
gram should be set up for the network, such as ntpd. For more about configuring ntpd, refer to
/usr/share/doc/ntp-<version-number>/index.htm for details on setting up Network Time Pro-
tocol servers (replace <version-number> with the version number of the ntp package installed
on the system).

Also, since certain aspects of Kerberos rely on the Domain Name Service (DNS), be sure
that the DNS entries and hosts on the network are all properly configured. Refer to the
Kerberos V5 System Administrator’s Guide, provided in PostScript and HTML formats
in /usr/share/doc/krb5-server-<version-number> for more information (replace
<version-number> with the version number of the krb5-server package installed on the
system).

Chapter 19. Kerberos 295

19.4. Kerberos and PAM
Currently, kerberized services do not make use of Pluggable Authentication Modules (PAM) — ker-
berized servers bypass PAM completely. However, applications that use PAM can make use of Ker-
beros for authentication if the pam_krb5 module (provided in the pam_krb5 package) is installed.
The pam_krb5 package contains sample configuration files that allow services like login and gdm
to authenticate users as well as obtain initial credentials using their passwords. If access to network
servers is always performed using kerberized services or services that use GSS-API, such as IMAP,
the network can be considered reasonably safe.

Tip

Administrators should be careful to not allow users to authenticate to most network services using
Kerberos passwords. Many protocols used by these services do not encrypt the password before
sending it over the network, destroying the benefits of the Kerberos system. For example, users
should not be allowed to authenticate using their Kerberos passwords over Telnet.

19.5. Configuring a Kerberos 5 Server
When setting up Kerberos, install the server first. If it is necessary to set up slave servers, the de-
tails of setting up relationships between master and slave servers are covered in the Kerberos 5 In-
stallation Guide located in the /usr/share/doc/krb5-server-<version-number> directory
(replace <version-number> with the version number of the krb5-server package installed on
the system).

To configure a basic Kerberos server, follow these steps:

1. Be sure that clock synchronization and DNS are functioning on all client and server machines
before configuring Kerberos 5. Pay particular attention to time synchronization between the
Kerberos server and its clients. If the server and client clocks are different by more than five
minutes (this default amount is configurable in Kerberos 5), Kerberos clients can not authenti-
cate to the server. This clock synchronization is necessary to prevent an attacker from using an
old Kerberos ticket to masquerade as a valid user.

It is advisable to set up a Network Time Protocol (NTP) compatible client/server network even
if Kerberos is not being used. Red Hat Enterprise Linux includes the ntp package for this pur-
pose. Refer to /usr/share/doc/ntp-<version-number>/index.htm for details about
how to set up Network Time Protocol servers and http://www.eecis.udel.edu/~ntp for additional
information about NTP.

2. Install the krb5-libs, krb5-server, and krb5-workstation packages on the dedicated
machine which runs the KDC. This machine needs to be very secure — if possible, it should
not run any services other than the KDC.

If a graphical user interface is required to administrate Kerberos, install the gnome-kerberos
package. It contains krb5, a GUI tool for managing tickets.

3. Edit the /etc/krb5.conf and /var/kerberos/krb5kdc/kdc.conf configuration files to
reflect the realm name and domain-to-realm mappings. A simple realm can be constructed by
replacing instances of EXAMPLE.COM and example.com with the correct domain name —
being certain to keep uppercase and lowercase names in the correct format — and by changing

296 Chapter 19. Kerberos

the KDC from kerberos.example.com to the name of the Kerberos server. By convention,
all realm names are uppercase and all DNS hostnames and domain names are lowercase. For
full details about the formats of these configuration files, refer to their respective man pages.

4. Create the database using the kdb5_util utility from a shell prompt:
/usr/kerberos/sbin/kdb5_util create -s

The create command creates the database that stores keys for the Kerberos realm. The -s
switch forces creation of a stash file in which the master server key is stored. If no stash file
is present from which to read the key, the Kerberos server (krb5kdc) prompts the user for the
master server password (which can be used to regenerate the key) every time it starts.

5. Edit the /var/kerberos/krb5kdc/kadm5.acl file. This file is used by kadmind to deter-
mine which principals have administrative access to the Kerberos database and their level of
access. Most organizations can get by with a single line:
*/admin@EXAMPLE.COM *

Most users are represented in the database by a single principal (with a NULL, or empty, in-
stance, such as joe@EXAMPLE.COM). In this configuration, users with a second principal with
an instance of admin (for example, joe/admin@EXAMPLE.COM) are able to wield full power
over the realm’s Kerberos database.

Once kadmind is started on the server, any user can access its services by running kadmin on
any of the clients or servers in the realm. However, only users listed in the kadm5.acl file can
modify the database in any way, except for changing their own passwords.

Note

The kadmin utility communicates with the kadmind server over the network, and uses Kerberos
to handle authentication. For this reason, the first principal must already exist before connecting
to the server over the network to administer it. Create the first principal with the kadmin.local
command, which is specifically designed to be used on the same host as the KDC and does
not use Kerberos for authentication.

Type the following kadmin.local command at the KDC terminal to create the first principal:
/usr/kerberos/sbin/kadmin.local -q "addprinc username/admin"

6. Start Kerberos using the following commands:
/sbin/service krb5kdc start
/sbin/service kadmin start
/sbin/service krb524 start

7. Add principals for the users using the addprinc command with kadmin. kadmin and
kadmin.local are command line interfaces to the KDC. As such, many commands are
available after launching the kadmin program. Refer to the kadmin man page for more
information.

8. Verify that the KDC is issuing tickets. First, run kinit to obtain a ticket and store it in a creden-
tial cache file. Next, use klist to view the list of credentials in the cache and use kdestroy to
destroy the cache and the credentials it contains.

Note

By default, kinit attempts to authenticate using the same system login username (not the
Kerberos server). If that username does not correspond to a principal in the Kerberos database,
kinit issues an error message. If that happens, supply kinit with the name of the correct
principal as an argument on the command line (kinit <principal>).

Once these steps are completed, the Kerberos server should be up and running.

Chapter 19. Kerberos 297

19.6. Configuring a Kerberos 5 Client
Setting up a Kerberos 5 client is less involved than setting up a server. At a minimum, install the client
packages and provide each client with a valid krb5.conf configuration file. Kerberized versions of
rsh and rlogin also requires some configuration changes.

1. Be sure that time synchronization is in place between the Kerberos client and the KDC. Re-
fer to Section 19.5 Configuring a Kerberos 5 Server for more information. In addition, verify
that DNS is working properly on the Kerberos client before configuring the Kerberos client
programs.

2. Install the krb5-libs and krb5-workstation packages on all of the client machines. Supply
a valid /etc/krb5.conf file for each client (usually this can be the same krb5.conf file used
by the KDC).

3. Before a workstation in the realm can allow users to connect using kerberized rsh and rlogin,
that workstation must have the xinetd package installed and have its own host principal in the
Kerberos database. The kshd and klogind server programs also need access to the keys for
their service’s principal.

Using kadmin, add a host principal for the workstation on the KDC. The instance in this case
is the hostname of the workstation. Use the -randkey option for the kadmin’s addprinc
command to create the principal and assign it a random key:
addprinc -randkey host/blah.example.com

Now that the principal has been created, keys can be extracted for the workstation by running
kadmin on the workstation itself , and using the ktadd command within kadmin:
ktadd -k /etc/krb5.keytab host/blah.example.com

4. To use other kerberized network services, they must first be started. Below is a list of some
common kerberized services and instructions about enabling them:

• rsh and rlogin — To use the kerberized versions of rsh and rlogin, enable klogin,
eklogin, and kshell.

• Telnet — To use kerberized Telnet, krb5-telnet must be enabled.

• FTP — To provide FTP access, create and extract a key for the principal with a root of ftp.
Be certain to set the instance to the fully qualified hostname of the FTP server, then enable
gssftp.

• IMAP — To use a kerberized IMAP server, the cyrus-imap package uses Kerberos 5 if
it also has the cyrus-sasl-gssapi package installed. The cyrus-sasl-gssapi pack-
age contains the Cyrus SASL plugins which support GSS-API authentication. Cyrus IMAP
should function properly with Kerberos as long as the cyrus user is able to find the proper key
in /etc/krb5.keytab, and the root for the principal is set to imap (created with kadmin).

The dovecot package also contains an IMAP server alternative to cyrus-imap, which is
also included with Red Hat Enterprise Linux, but does not support GSS-API and Kerberos to
date.

• CVS — To use a kerberized CVS server, gserver uses a principal with a root of cvs and is
otherwise identical to the CVS pserver.

For details about how to enable services, refer to the chapter titled Controlling Access to Services
in the Red Hat Enterprise Linux System Administration Guide.

19.7. Additional Resources
For more information about Kerberos, refer to the following resources.

298 Chapter 19. Kerberos

19.7.1. Installed Documentation

• The /usr/share/doc/krb5-server-<version-number>/directory — The Kerberos V5 In-
stallation Guide and the Kerberos V5 System Administrator’s Guide in PostScript and HTML for-
mats. The krb5-server package must be installed.

• The /usr/share/doc/krb5-workstation-<version-number>/directory — The Kerberos
V5 UNIX User’s Guide in PostScript and HTML formats. The krb5-workstation package must
be installed.

• Kerberos man pages — There are a number of man pages for the various applications and config-
uration files involved with a Kerberos implementation. The following is a list of some of the more
important man pages.

Client Applications

• man kerberos— An introduction to the Kerberos system which describes how credentials
work and provides recommendations for obtaining and destroying Kerberos tickets. The
bottom of the man page references a number of related man pages.

• man kinit — Describes how to use this command to obtain and cache a ticket-granting
ticket.

• man kdestroy — Describes how to use this command to destroy Kerberos credentials.

• man klist — Describes how to use this command to list cached Kerberos credentials.

Administrative Applications

• man kadmin — Describes how to use this command to administer the Kerberos V5
database.

• man kdb5_util — Describes how to use this command to create and perform low-level
administrative functions on the Kerberos V5 database.

Server Applications

• man krb5kdc — Describes available command line options for the Kerberos V5 KDC.

• man kadmind — Describes available command line options for the Kerberos V5 adminis-
tration server.

Configuration Files

• man krb5.conf — Describes the format and options available within the configuration
file for the Kerberos V5 library.

• man kdc.conf — Describes the format and options available within the configuration file
for the Kerberos V5 AS and KDC.

Chapter 19. Kerberos 299

19.7.2. Useful Websites

• http://web.mit.edu/kerberos/www/ — Kerberos: The Network Authentication Protocol webpage
from MIT.

• http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html — The Kerberos Frequently Asked
Questions (FAQ).

• ftp://athena-dist.mit.edu/pub/kerberos/doc/usenix.PS — The PostScript version of Kerberos: An
Authentication Service for Open Network Systems by Jennifer G. Steiner, Clifford Neuman, and
Jeffrey I. Schiller. This document is the original paper describing Kerberos.

• http://web.mit.edu/kerberos/www/dialogue.html — Designing an Authentication System: a Dia-
logue in Four Scenes originally by Bill Bryant in 1988, modified by Theodore Ts’o in 1997. This
document is a conversation between two developers who are thinking through the creation of a
Kerberos-style authentication system. The conversational style of the discussion make this a good
starting place for people who are completely unfamiliar with Kerberos.

• http://www.ornl.gov/~jar/HowToKerb.html — How to Kerberize your site is a good reference for
kerberizing a network.

• http://www.networkcomputing.com/netdesign/kerb1.html — Kerberos Network Design Manual is
a thorough overview of the Kerberos system.

300 Chapter 19. Kerberos

Chapter 20.
SSH Protocol

SSH™ (or Secure SHell) is a protocol which facilitates secure communications between two systems
using a client/server architecture and allows users to log into server host systems remotely. Unlike
other remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, making
it impossible for intruders to collect unencrypted passwords.

SSH is designed to replace older, less secure terminal applications used to log into remote hosts,
such as telnet or rsh. A related program called scp replaces older programs designed to copy files
between hosts, such as rcp. Because these older applications do not encrypt passwords transmitted
between the client and the server, avoid them whenever possible. Using secure methods to log into
remote systems decreases the risks for both the client system and the remote host.

20.1. Features of SSH
The SSH protocol provides the following safeguards:

• After an initial connection, the client can verify that it is connecting to the same server it had
connected to previously.

• The client transmits its authentication information to the server using strong, 128-bit encryption.

• All data sent and received during a session is transferred using 128-bit encryption, making inter-
cepted transmissions extremely difficult to decrypt and read.

• The client can forward X111 applications from the server. This technique, called X11 forwarding,
provides a secure means to use graphical applications over a network.

Because the SSH protocol encrypts everything it sends and receives, it can be used to secure otherwise
insecure protocols. Using a technique called port forwarding, an SSH server can become a conduit to
securing otherwise insecure protocols, like POP, and increasing overall system and data security.

Red Hat Enterprise Linux includes the general OpenSSH package (openssh) as well as the OpenSSH
server (openssh-server) and client (openssh-clients) packages. Refer to the chapter titled
OpenSSH in the Red Hat Enterprise Linux System Administration Guide for instructions on installing
and deploying OpenSSH. Note, the OpenSSH packages require the OpenSSL package (openssl)
which installs several important cryptographic libraries, enabling OpenSSH to provide encrypted com-
munications.

20.1.1. Why Use SSH?
Nefarious computer users have a variety of tools at their disposal enabling them to disrupt, intercept,
and re-route network traffic in an effort to gain access to a system. In general terms, these threats can
be categorized as follows:

• Interception of communication between two systems — In this scenario, the attacker can be some-
where on the network between the communicating entities, copying any information passed be-
tween them. The attacker may intercept and keep the information, or alter the information and send
it on to the intended recipient.

1. X11 refers to the X11R6.7 windowing display system, traditionally referred to as the X Window System or

X. Red Hat Enterprise Linux includes XFree86, an open source X Window System.

302 Chapter 20. SSH Protocol

This attack can be mounted through the use of a packet sniffer — a common network utility.

• Impersonation of a particular host — Using this strategy, an attacker’s system is configured to
pose as the intended recipient of a transmission. If this strategy works, the user’s system remains
unaware that it is communicating with the wrong host.

This attack can be mounted through techniques known as DNS poisoning2 or IP spoofing3.

Both techniques intercept potentially sensitive information and, if the interception is made for hostile
reasons, the results can be disastrous.

If SSH is used for remote shell login and file copying, these security threats can be greatly diminished.
This is because the SSH client and server use digital signatures to verify their identity. Additionally,
all communication between the client and server systems is encrypted. Attempts to spoof the identity
of either side of a communication does not work, since each packet is encrypted using a key known
only by the local and remote systems.

20.2. SSH Protocol Versions
The SSH protocol allows any client and server programs built to the protocol’s specifications to com-
municate securely and to be used interchangeably.

Two varieties of SSH (version 1 and version 2) currently exist. SSH version 1 makes use of several
patented encryption algorithms (however, some of these patents have expired) and is vulnerable to
a well known security exploit that allows an attacker to insert data into the communication stream.
The OpenSSH suite under Red Hat Enterprise Linux uses SSH version 2 which has an enhanced
key exchange algorithm not vulnerable to the exploit in version 1. However, the OpenSSH suite does
support version 1 connections.

Important

It is recommended that only SSH version 2-compatible servers and clients are used whenever pos-
sible.

20.3. Event Sequence of an SSH Connection
The following series of events help protect the integrity of SSH communication between two hosts.

• A cryptographic handshake is made so that the client can verify that it is communicating with the
correct server.

• The transport layer of the connection between the client and remote host is encrypted using a
symmetric cipher.

• The client authenticates itself to the server.

• The remote client interacts with the remote host over the encrypted connection.

2. DNS poisoning occurs when an intruder cracks a DNS server, pointing client systems to a maliciously du-

plicated host.
3. IP spoofing occurs when an intruder sends network packets which falsely appear to be from a trusted host on

the network.

Chapter 20. SSH Protocol 303

20.3.1. Transport Layer
The primary role of the transport layer is to facilitate safe and secure communication between the two
hosts at the time of authentication and during subsequent communication. The transport layer accom-
plishes this by handling the encryption and decryption of data, and by providing integrity protection
of data packets as they are sent and received. The transport layer also provides compression, speeding
the transfer of information.

Once an SSH client contacts a server, key information is exchanged so that the two systems can
correctly construct the transport layer. The following steps occur during this exchange:

• Keys are exchanged

• The public key encryption algorithm is determined

• The symmetric encryption algorithm is determined

• The message authentication algorithm is determined

• The hash algorithm is determined

During the key exchange, the server identifies itself to the client with a unique host key. If the client
has never communicated with this particular server before, the server’s host key is unknown to the
client and it does not connect. OpenSSH gets around this problem by accepting the server’s host key
after the user is notified and verifies the acceptance of the new host key. In subsequent connections,
the server’s host key is checked against the saved version on the client, providing confidence that
the client is indeed communicating with the intended server. If, in the future, the host key no longer
matches, the user must remove the client’s saved version before a connection can occur.

Caution

It is possible for an attacker to masquerade as an SSH server during the initial contact since the
local system does not know the difference between the intended server and a false one set up by
an attacker. To help prevent this, verify the integrity of a new SSH server by contacting the server
administrator before connecting for the first time or in the event of a host key mismatch.

SSH is designed to work with almost any kind of public key algorithm or encoding format. After
an initial key exchange creates a hash value used for exchanges and a shared secret value, the two
systems immediately begin calculating new keys and algorithms to protect authentication and future
data sent over the connection.

After a certain amount of data has been transmitted using a given key and algorithm (the exact amount
depends on the SSH implementation), another key exchange occurs, generating another set of hash
values and a new shared secret value. Even if an attacker is able to determine the hash and shared
secret value, this information is only useful for a limited period of time.

20.3.2. Authentication
Once the transport layer has constructed a secure tunnel to pass information between the two systems,
the server tells the client the different authentication methods supported, such as using a private key-
encoded signature or typing a password. The client then tries to authenticate itself to the server using
one of these supported methods.

SSH servers and clients can be configured to allow different types of authentication, which gives each
side the optimal amount of control. The server can decide which encryption methods it supports based
on its security model, and the client can choose the order of authentication methods to attempt from
the available options. Thanks to the secure nature of the SSH transport layer, even seemingly insecure
authentication methods, such as a host and password-based authentication, are safe to use.

304 Chapter 20. SSH Protocol

20.3.3. Channels
After a successful authentication over the SSH transport layer, multiple channels are opened via a
technique called multiplexing4. Each of these channels handles communication for different terminal
sessions and for forwarded X11 sessions.

Both clients and servers can create a new channel. Each channel is then assigned a different number
on each end of the connection. When the client attempts to open a new channel, the clients sends
the channel number along with the request. This information is stored by the server and is used to
direct communication to that channel. This is done so that different types of sessions do not affect
one another and so that when a given session ends, its channel can be closed without disrupting the
primary SSH connection.

Channels also support flow-control, which allows them to send and receive data in an orderly fashion.
In this way, data is not sent over the channel until the client receives a message that the channel is
open.

The client and server negotiate the characteristics of each channel automatically, depending on the
type of service the client requests and the way the user is connected to the network. This allows
great flexibility in handling different types of remote connections without having to change the basic
infrastructure of the protocol.

20.4. OpenSSH Configuration Files
OpenSSH has two different sets of configuration files: one for client programs (ssh, scp, and sftp)
and one for the server daemon (sshd).

System-wide SSH configuration information is stored in the /etc/ssh/ directory:

• moduli — Contains Diffie-Hellman groups used for the Diffie-Hellman key exchange which is
critical for constructing a secure transport layer. When keys are exchanged at the beginning of an
SSH session, a shared, secret value is created which cannot be determined by either party alone.
This value is then used to provide host authentication.

• ssh_config — The system-wide default SSH client configuration file. It is overridden if one is
also present in the user’s home directory (~/.ssh/config).

• sshd_config — The configuration file for the sshd daemon.

• ssh_host_dsa_key — The DSA private key used by the sshd daemon.

• ssh_host_dsa_key.pub — The DSA public key used by the sshd daemon.

• ssh_host_key — The RSA private key used by the sshd daemon for version 1 of the SSH pro-
tocol.

• ssh_host_key.pub — The RSA public key used by the sshd daemon for version 1 of the SSH
protocol.

• ssh_host_rsa_key — The RSA private key used by the sshd daemon for version 2 of the SSH
protocol.

• ssh_host_rsa_key.pub — The RSA public key used by the sshd for version 2 of the SSH
protocol.

User-specific SSH configuration information is stored in the user’s home directory within the
~/.ssh/ directory:

4. A multiplexed connection consists of several signals being sent over a shared, common medium. With SSH,

different channels are sent over a common secure connection.

Chapter 20. SSH Protocol 305

• authorized_keys — This file holds a list of authorized public keys for servers. When the client
connects to a server, the server authenticates the client by checking its signed public key stored
within this file.

• id_dsa — Contains the DSA private key of the user.

• id_dsa.pub — The DSA public key of the user.

• id_rsa — The RSA private key used by ssh for version 2 of the SSH protocol.

• id_rsa.pub — The RSA public key used by ssh for version 2 of the SSH protocol

• identity — The RSA private key used by ssh for version 1 of the SSH protocol.

• identity.pub — The RSA public key used by ssh for version 1 of the SSH protocol.

• known_hosts — This file contains DSA host keys of SSH servers accessed by the user. This file
is very important for ensuring that the SSH client is connecting the correct SSH server.

Important

If an SSH server’s host key has changed, the client notifys the user that the connection cannot
proceed until the server’s host key is deleted from the known_hosts file using a text editor. Before
doing this, however, contact the system administrator of the SSH server to verify the server is not
compromised.

Refer to the ssh_config and sshd_config man pages for information concerning the various di-
rectives available in the SSH configuration files.

20.5. More Than a Secure Shell
A secure command line interface is just the beginning of the many ways SSH can be used. Given the
proper amount of bandwidth, X11 sessions can be directed over an SSH channel. Or, by using TCP/IP
forwarding, previously insecure port connections between systems can be mapped to specific SSH
channels.

20.5.1. X11 Forwarding
Opening an X11 session over an established SSH connection is as easy as running an X program on
a local machine. When an X program is run from the secure shell prompt, the SSH client and server
create a new secure channel, and the X program data is sent over that channel to the client machine
transparently.

X11 forwarding can be very useful. For example, X11 forwarding can be used to create a secure,
interactive session with up2date. To do this, connect to the server using ssh and type:

up2date &

After supplying the root password for the server, the Red Hat Update Agent appears and allows the
remote user to safely update the remote system.

20.5.2. Port Forwarding
SSH can secure otherwise insecure TCP/IP protocols via port forwarding. When using this technique,
the SSH server becomes an encrypted conduit to the SSH client.

306 Chapter 20. SSH Protocol

Port forwarding works by mapping a local port on the client to a remote port on the server. SSH can
map any port from the server to any port on the client; port numbers do not need to match for this
technique to work.

To create a TCP/IP port forwarding channel which listens for connections on the localhost, use the
following command:

ssh -L local-port:remote-hostname:remote-port username@hostname

Note

Setting up port forwarding to listen on ports below 1024 requires root level access.

To check email on a server called mail.example.com using POP3 through an encrypted connection,
use the following command:

ssh -L 1100:mail.example.com:110 mail.example.com

Once the port forwarding channel is in place between the client machine and the mail server, direct a
POP3 mail client to use port 1100 on the localhost to check for new mail. Any requests sent to port
1100 on the client system are directed securely to the mail.example.com server.

If mail.example.com is not running an SSH server, but another machine on the same network is,
SSH can still be used to secure part of the connection. However, a slightly different command is
necessary:

ssh -L 1100:mail.example.com:110 other.example.com

In this example, POP3 requests from port 1100 on the client machine are forwarded through the
SSH connection on port 22 to the SSH server, other.example.com. Then, other.example.com
connects to port 110 on mail.example.com to check for new mail. Note, when using this technique
only the connection between the client system and other.example.com SSH server is secure.

Port forwarding can also be used to get information securely through network firewalls. If the firewall
is configured to allow SSH traffic via its standard port (22) but blocks access to other ports, a con-
nection between two hosts using the blocked ports is still possible by redirecting their communication
over an established SSH connection.

Note

Using port forwarding to forward connections in this manner allows any user on the client system to
connect to that service. If the client system becomes compromised, the attacker also has access to
forwarded services.

System administrators concerned about port forwarding can disable this functionality on the server by
specifying a No parameter for the AllowTcpForwarding line in /etc/ssh/sshd_config and restart-
ing the sshd service.

Chapter 20. SSH Protocol 307

20.6. Requiring SSH for Remote Connections
For SSH to be truly effective, using insecure connection protocols, such as Telnet and FTP, should
be prohibited. Otherwise, a user’s password may be protected using SSH for one session, only to be
captured later while logging in using Telnet.

Some services to disable include:

• telnet

• rsh

• rlogin

• vsftpd

To disable insecure connection methods to the system, use the command line program chkconfig, the
ncurses-based program ntsysv, or the Services Configuration Tool (redhat-config-services)
graphical application. All of these tools require root level access.

For more information on runlevels and configuring services with chkconfig, ntsysv, and the Ser-
vices Configuration Tool, refer to the chapter titled Controlling Access to Services in the Red Hat
Enterprise Linux System Administration Guide.

20.7. Additional Resources
For more information about SSH, refer to the following resources.

20.7.1. Installed Documentation

• The /usr/share/doc/openssh-<version-number>/ directory — Replace
<version-number> with the installed version of the OpenSSH package. This directory
contains a README with basic information about the OpenSSH project and a file called
RFC.nroff with general information about the SSH protocol.

• SSH related man pages — There are a number of man pages for the various applications and
configuration files involved with SSH. The following is a list of some of the more important man
pages.

Client Applications

• man ssh — Describes how to use this command to connect to an SSH server.

• man scp — Describes how to use this command to copy files to and from an SSH server.

• man sftp — Describes how to use this command to interactively copy files to and from
and SSH server.

Server Applications

• man sshd — Describes available command line options for the SSH server.

308 Chapter 20. SSH Protocol

Configuration Files

• man ssh_config — Describes the format and options available within the configuration
file for SSH clients.

• man sshd_config — Describes the format and options available within the configuration
file for the SSH server.

20.7.2. Useful Websites

• http://www.openssh.com — The OpenSSH FAQ page, bug reports, mailing lists, project goals, and
a more technical explanation of the security features.

• http://www.openssl.org — The OpenSSL FAQ page, mailing lists, and a description of the project
goal.

• http://www.freessh.org — SSH client software for other platforms.

20.7.3. Related Books

• Red Hat Enterprise Linux System Administration Guide; Red Hat, Inc. — The OpenSSH chapter
explains how to set up an SSH server and use the SSH client software provided in the OpenSSH
suite of tools. It also explains how to generate an RSA (or DSA) key pair, which allow for password-
free logins.

Chapter 21.
SELinux

Security-Enhanced Linux, or SELinux, is a security architecture integrated into the 2.6.x kernel using
the linux security modules (LSM). It is a project of the United States National Security Agency (NSA)
and the SELinux community. SELinux integration into Red Hat Enterprise Linux was a joint effort
between the NSA and Red Hat.

21.1. Introduction to SELinux
SELinux provides a flexible mandatory access control (MAC) system built into the Linux kernel.
Under standard Linux discretionary access control (DAC), an application or process running as a
user (UID or SUID) has the user’s permissions to objects such as files, sockets, and other processes.
Running an SELinux MAC kernel protects the system from malicious or flawed applications that
can damage or destroy the system. SELinux defines the access and transition rights of every user,
application, process, and file on the system. SELinux then governs the interactions of these subjects
and objects using a security policy that specifies how strict or lenient a given Red Hat Enterprise Linux
installation should be.

For the most part, SELinux is almost completely invisible to system users. Only system administrators
must worry about how strict a policy to implement for their server environment. The policy can be as
strict or lenient as needed, and is very finely detailed. This detail gives the SELinux kernel complete,
granular control over the entire system.

When a subject such as an application attempts to access an object such as a file, the policy enforce-
ment server in the kernel checks an access vector cache (AVC), where subject and object permissions
are cached. If a decision cannot be made based on data in the AVC, the request continues to the secu-
rity server, which looks up the security context of the application and the file in a matrix. Permission is
then granted or denied, with an avc: denied message detailed in /var/log/messages. Subjects
and objects gain their security context from installed policy, which also provides the information to
populate the security server’s matrix.

In addition to running in an enforcing mode, SELinux can run in a permissive mode, where the AVC
is checked and denials are logged, but SELinux does not enforce the policy.

For more information about how SELinux works, refer to Section 21.3 Additional Resources.

21.2. Files Related to SELinux
The following sections describe SELinux configuration files and related file systems.

21.2.1. The /selinux/ Pseudo-File System
The /selinux/ pseudo-file system contains commands that are most commonly used by the kernel
subsystem. This type of file system is similar to the /proc/ pseudo-file system.

In most cases, administrators and users do not need to manipulate this component compared to other
SELinux files and directories.

The following example shows sample contents of the /selinux/ directory:

-rw-rw-rw- 1 root root 0 Sep 22 13:14 access
dr-xr-xr-x 1 root root 0 Sep 22 13:14 booleans
--w------- 1 root root 0 Sep 22 13:14 commit_pending_bools

310 Chapter 21. SELinux

-rw-rw-rw- 1 root root 0 Sep 22 13:14 context
-rw-rw-rw- 1 root root 0 Sep 22 13:14 create
--w------- 1 root root 0 Sep 22 13:14 disable
-rw-r--r-- 1 root root 0 Sep 22 13:14 enforce
-rw------- 1 root root 0 Sep 22 13:14 load
-r--r--r-- 1 root root 0 Sep 22 13:14 mls
-r--r--r-- 1 root root 0 Sep 22 13:14 policyvers
-rw-rw-rw- 1 root root 0 Sep 22 13:14 relabel
-rw-rw-rw- 1 root root 0 Sep 22 13:14 user

For example, running the cat command on the enforce file reveals either a 1 for enforcing mode or
0 for permissive mode.

21.2.2. SELinux Configuration Files
The following sections describe SELinux configuration and policy files, and related file systems lo-
cated in the /etc/ directory.

21.2.2.1. The /etc/sysconfig/selinux Configuration File
There are two ways to configure SELinux under Red Hat Enterprise Linux: using the Security Level
Configuration Tool (system-config-securitylevel), or manually editing the configuration file
(/etc/sysconfig/selinux).

The /etc/sysconfig/selinux file is the primary configuration file for enabling or disabling
SELinux, as well as setting which policy to enforce on the system and how to enforce it.

Note

The /etc/sysconfig/selinux contains a symbolic link to the actual configuration file,
/etc/selinux/config.

The following explains the full subset of options available for configuration:

• SELINUX=<enforcing|permissive|disabled> — Defines the top-level state of SELinux on
a system.

• enforcing — The SELinux security policy is enforced.

• permissive — The SELinux system prints warnings but does not enforce policy. This is useful
for debugging and troubleshooting purposes. In permissive mode, more denials will be logged, as
subjects will be able to continue with actions otherwise denied in enforcing mode. For example,
traversing a directory tree will produce multiple avc: denied messages for every directory
level read, where a kernel in enforcing mode would have stopped the initial traversal and kept
further denial messages from occurring.

• disabled — SELinux is fully disabled. SELinux hooks are disengaged from the kernel and the
pseudo-file system is unregistered.

Chapter 21. SELinux 311

Tip

Actions made while SELinux is disabled may cause the file system to no longer have the proper
security context as defined by the policy. Running fixfiles relabel prior to enabling SELinux
will relabel the file system so that SELinux works properly when enabled. For more information,
refer to the fixfiles(8) manpage.

Note

Additional white space at the end of a configuration line or as extra lines at the end of the file may
cause unexpected behavior. To be safe, remove unnecessary white spaces.

• SELINUXTYPE=<targeted|strict> — Specifies which policy is currently being enforced by
SELinux.

• targeted — Only targeted network daemons are protected.

Important

The following daemons are protected in the default targeted policy: dhcpd, httpd (apache.te),
named, nscd, ntpd, portmap, snmpd, squid, and syslogd. The rest of the system runs in the
unconfined_t domain.

The policy files for these daemons can be found in
/etc/selinux/targeted/src/policy/domains/program and are subject to change, as
newer versions of Red Hat Enterprise Linux are released.

Policy enforcement for these daemons can be turned on or off, using Boolean values controlled by
Security Level Configuration Tool (system-config-securitylevel). Switching a Boolean
value for a targeted daemon disables the policy transition for the daemon, which prevents, for ex-
ample, init from transitioning dhcpd from the unconfined_t domain to the domain specified
in dhcpd.te. The domain unconfined_t allows subjects and objects with that security context
to run under standard Linux security.

• strict — Full SELinux protection, for all daemons. Security contexts are defined for all sub-
jects and objects, and every single action is processed by the policy enforcement server.

21.2.2.2. The /etc/selinux/ Directory
The /etc/selinux/ directory is the primary location for all policy files as well as the main config-
uration file.

The following example shows sample contents of the /etc/selinux/ directory:

-rw-r--r-- 1 root root 448 Sep 22 17:34 config
drwxr-xr-x 5 root root 4096 Sep 22 17:27 strict
drwxr-xr-x 5 root root 4096 Sep 22 17:28 targeted

The two subdirectories, strict/ and targeted/, are the specific directories where the policy files
of the same name (i.e., strict and targeted) are contained.

For more information on SELinux policy and policy configuration, refer to the rhel-pwg-selinux.

312 Chapter 21. SELinux

21.2.3. SELinux Utilities
The following are some of the most commonly used SELinux utilities:

• /usr/bin/setenforce — Modifies in real-time the mode SELinux is running. By executing
setenforce 1, SELinux is put in enforcing mode. By executing setenforce 0, SELinux is
put in permissive mode. To actually disable SELinux, you need to either set the parameter in
/etc/sysconfig/selinux or pass the parameter selinux=0 to the kernel, either in
/etc/grub.conf or at boot time.

• /usr/bin/sestatus -v — Gets the detailed status of a system running SELinux. The following
example shows an excerpt of sestatus output:
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Policy version: 18

• /usr/bin/newrole— Runs a new shell in a new context, or role. Policy must allow the transition
to the new role.

• /sbin/restorecon — Sets the security context of one or more files by marking the extended
attributes with the appropriate file or security context.

• /sbin/fixfiles — Checks or corrects the security context database on the file system.

Refer to the man page associated with these utilities for more information.

For more information on all binary utilities available, refer to the setools or policycoreutils
package contents by running rpm -ql <package-name>, where <package-name> is the name
of the specific package.

21.3. Additional Resources
The following sections give you the means to explore SELinux in greater detail.

21.3.1. Installed Documentation

• /usr/share/doc/setools-<version-number>/ — All documentation for utilities
contained in the setools package. This includes all helper scripts, sample configuration files, and
documentation.

21.3.2. Red Hat Documentation

• rhel-pwg-selinux; — Explains how to create and configure SELinux policy.

• Red Hat SELinux Application Development Guide; — Considers application development in an
SELinux system.

Chapter 21. SELinux 313

21.3.3. Useful Websites

• http://www.nsa.gov/selinux/ — Homepage for the NSA SELinux development team. Many re-
sources are available in HTML and PDF formats. Although many of these links are not Red Hat
Enterprise Linux specific, some concepts may apply.

• http://fedora.redhat.com/docs/ — Homepage for the Fedora documentation project, which contains
Fedora Core specific materials that may be more timely, since the release cycle is much shorter.

• http://selinux.sourceforge.net — Homepage for the SELinux community.

314 Chapter 21. SELinux

IV. Appendixes
Table of Contents
A. General Parameters and Modules .. 317

Appendix A.
General Parameters and Modules

This appendix is provided to illustrate some of the possible parameters available for common hardware
device drivers1, which under Red Hat Enterprise Linux are called kernel modules. In most cases, the
default parameters do work. However, there may be times when extra module parameters are necessary
for a device to function properly or to override the module’s default parameters for the device.

During installation, Red Hat Enterprise Linux uses a limited subset of device drivers to create a stable
installation environment. Although the installation program supports installation on many different
types of hardware, some drivers (including those for SCSI adapters and network adapters) are not
included in the installation kernel. Rather, they must be loaded as modules by the user at boot time. For
information about extra kernel modules during the installation process, refer to the section concerning
alternative boot methods in the chapter titled Steps to Get You Started in the Red Hat Enterprise Linux
Installation Guide.

Once installation is completed, support exists for a large number of devices through kernel modules.

Important

Red Hat provides a large number of unsupported device drivers in a group of packages called
kernel-unsupported-<kernel-version>, kernel-smp-unsupported-<kernel-version>, and
kernel-hugemem-unsupported-<kernel-version>. Replace <kernel-version> with the ver-
sion of the kernel installed on the system. These packages are not installed by the Red Hat Enterprise
Linux installation program, and the modules provided are not supported by Red Hat, Inc.

A.1. Specifying Module Parameters
In some situations, it may be necessary to supply parameters to a module as it is loaded for it to
function properly.

For instance, to enable full duplex at 100Mbps connection speed for an Intel Ether Express/100 card,
load the e100 driver with the e100_speed_duplex=4 option.

Caution

When a parameter has commas, be sure not to put a space after a comma.

Tip

The modinfo command is also useful for listing various information about a kernel module, such as
version, dependencies, paramater options, and aliases.

1. A driver is software which enables Linux to use a particular hardware device. Without a driver, the kernel

cannot communicate with attached devices.

318 Appendix A. General Parameters and Modules

A.2. SCSI parameters

Hardware Module Parameters

3ware Storage Controller 3w-xxxx.o

NCR53c810/820/720,
NCR53c700/710/700-66

53c7,8xx.o

Adaptec AACRAID aacraid.o

Adaptec 28xx, R9xx, 39xx
AHA-284x, AHA-29xx,
AHA-394x, AHA-398x,
AHA-274x, AHA-274xT,
AHA-2842, AHA-2910B,
AHA-2920C, AHA-2930/U/U2,
AHA-2940/W/U/UW/AU/,
U2W/U2/U2B/, U2BOEM,
AHA-2944D/WD/UD/UWD,
AHA-2950U2/W/B,
AHA-3940/U/W/UW/,
AUW/U2W/U2B,
AHA-3950U2D,
AHA-3985/U/W/UW, AIC-777x,
AIC-785x, AIC-786x, AIC-787x,
AIC-788x , AIC-789x, AIC-3860

aic7xxx.o

ICP RAID Controller gdth.o

IBM ServeRAID ips.o

AMI MegaRAID 418, 428, 438,
466, 762

megaraid.o

Qlogic 1280 qla1280.o

Table A-1. SCSI Parameters

A.3. Ethernet Parameters

Important

Most modern Ethernet-based network interface cards (NICs), do not require module parameters to
alter settings. Instead, they can be configured using ethtool or mii-tool. Only after these tools
fail to work should module parameters be adjusted. Module paramaters can be viewed using the
modinfo command.

Note

For information about using these tools, consult the man pages for ethtool, mii-tool, and modinfo.

Appendix A. General Parameters and Modules 319

Hardware Module Parameters

3Com EtherLink PCI
III/XL Vortex (3c590,
3c592, 3c595, 3c597)
Boomerang (3c900, 3c905,
3c595)

3c59x.o full_duplex=
0 is off
1 is on

RTL8139, SMC EZ Card
Fast Ethernet, RealTek
cards using RTL8129, or
RTL8139 Fast Ethernet
chipsets

8139too.o

Intel Ether Express/100
driver

e100.o e100_speed_duplex=X
If X =
0 = autodetect speed and duplex
1 = 10Mbps, half duplex
2 = 10Mbps, full duplex
3 = 100Mbps, half duplex
4 = 100Mbps, full duplex

Intel EtherExpress/1000
Gigabit

e1000.o

Intel i82557/i82558 PCI
EtherExpressPro driver

eepro100.o

NatSemi DP83815 Fast
Ethernet

natsemi.o

AMD PCnet32 and AMD
PCnetPCI

pcnet32.o

SIS 900/701G PCI Fast
Ethernet

sis900.o

ThunderLAN tlan.o

Digital 21x4x Tulip PCI
Ethernet cards SMC
EtherPower 10
PCI(8432T/8432BT) SMC
EtherPower 10/100
PCI(9332DST) DEC
EtherWorks 100/10
PCI(DE500-XA) DEC
EtherWorks 10
PCI(DE450) DEC
QSILVER’s, Znyx 312
etherarray Allied Telesis
LA100PCI-T Danpex
EN-9400, Cogent EM110

tulip.o io=io_port

320 Appendix A. General Parameters and Modules

Hardware Module Parameters

VIA Rhine PCI Fast
Ethernet cards with either
the VIA VT86c100A
Rhine-II PCI or 3043
Rhine-I D-Link
DFE-930-TX PCI 10/100

via-rhine.o

Table A-2. Ethernet Module Parameters

A.3.1. Using Multiple Ethernet Cards
It is possible to use multiple Ethernet cards on a single machine. For each card there must be an alias
and, possibly, options lines for each card in /etc/modules.conf. Refer to the chapter titled Kernel
Modules in the Red Hat Enterprise Linux System Administration Guide for more information.

For additional information about using multiple Ethernet cards, refer to the Linux Ethernet-HOWTO
online at http://www.redhat.com/mirrors/LDP/HOWTO/Ethernet-HOWTO.html.

A.3.2. The Channel Bonding Module
Red Hat Enterprise Linux allows administrators to bind NICs together into a single channel using
the bonding kernel module and a special network interface, called a channel bonding interface.
Channel bonding enables two or more network interfaces to act as one, simultaneously increasing the
bandwidth and providing redundancy.

To channel bond multiple network interfaces, the administrator must perform the following steps:

1. Add the following line to /etc/modules.conf:
alias bond<N> bonding

Replace <N> with the interface number, such as 0. For each configured channel bonding inter-
face, there must be a corresponding entry in /etc/modules.conf.

2. Configure a channel bonding interface as outlined in Section 8.2.3 Channel Bonding Interfaces.

3. To enhance performance, adjust available module options to ascertain what combination works
best. Pay particular attention to the miimon or arp_interval and the arp_ip_target pa-
rameters. Refer to Section A.3.2.1 bonding Module Directives for a listing of available op-
tions.

4. After testing, place preferred module options in /etc/modules.conf.

A.3.2.1. bonding Module Directives
Before finalizing the settings for the bonding module, it is a good idea to test which settings work
best. To do this, open a shell prompt as root and type:

tail -f /var/log/messages

Open another shell prompt and use the /sbin/insmod command to load the bonding module with
different parameters while observing the kernel messages for errors.

The /sbin/insmod command is issued in the following format:

/sbin/insmod bond<N> <parameter=value>

Appendix A. General Parameters and Modules 321

Replace <N> with the number for the bonding interface. Replace <parameter=value> with a
space separated list of desired parameters for the interface.

Once satisfied that there are no errors and after verifying the performance of the bonding interface,
add the appropriate bonding module parameters to /etc/modules.conf.

The following is a list of available parameters for the bonding module:

• mode= — Specifies one of four policies allowed for the bonding module. Acceptable values for
this parameter are:

• 0 — Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received
and sent out sequentially on each bonded slave interface beginning with the first one available.

• 1 — Sets an active-backup policy for fault tolerance. Transmissions are received and sent out
via the first available bonded slave interface. Another bonded slave interface is only used if the
active bonded slave interface fails.

• 2— Sets an XOR (exclusive-or) policy for fault tolerance and load balancing. Using this method,
the interface matches up the incoming request’s MAC address with the MAC address for one of
the slave NICs. Once this link is established, transmissions are sent out sequentially beginning
with the first available interface.

• 3 — Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces.

• 4 — Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that
share the same speed and duplex settings. Transmits and receives on all slaves in the active
aggregator. Requires a switch that is 802.3ad compliant.

• 5 — Sets a Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The
outgoing traffic is distributed according to the current load on each slave interface. Incoming
traffic is received by the current slave. If the receiving slave fails, another slave takes over the
MAC address of the failed slave.

• 6— Sets an Active Load Balancing (ALB) policy for fault tolerance and load balancing. Includes
transmit and receive load balancing for IPV4 traffic. Receive load balancing is achieved through
ARP negotiation.

• miimon= — Specifies (in milliseconds) how often MII link monitoring occurs. This is useful if
high availability is required because MII is used to verify that the NIC is active. To verify that the
driver for a particular NIC supports the MII tool, type the following command as root:
ethtool <interface-name> | grep "Link detected:"

In this command, replace <interface-name> with the name of the device interface, such as
eth0, not the bond interface. If MII is supported, the command returns:
Link detected: yes

If using a bonded interface for high availability, the module for each NIC must support MII.

Setting the value to 0 (the default), turns this feature off. When configuring this setting, a good
starting point for this parameter is 100.

• downdelay= — Specifies (in milliseconds) how long to wait after link failure before disabling the
link. The value must be a multiple of the value specified in the miimon parameter. The value is set
to 0 by default, which disables it.

• updelay= — Specifies (in milliseconds) how long to wait before enabling a link. The value must
be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which
disables it.

• arp_interval= — Specifies (in milliseconds) how often ARP monitoring occurs.

322 Appendix A. General Parameters and Modules

If using this setting while in mode 0 or 2 (the two load-balancing modes), the network switch
must be configured to distribute packets evenly across the NICs. For more information on how to
accomplish this, refer to
/usr/share/doc/kernel-doc-<kernel-version>/Documentation/networking/
bonding.txt

The value is set to 0 by default, which disables it.

• arp_ip_target= — Specifies the target IP address of ARP requests when the arp_interval
parameter is enabled. Up to 16 IP addresses can be specified in a comma separated list.

• primary= — Specifies the interface name, such as eth0, of the primary device. The primary
device is the first of the bonding interfaces to be used and is not abandoned unless it fails. This
setting is particularly useful when one NIC in the bonding interface is faster and, therefore, able to
handle a bigger load.

This setting is only valid when the bonding interface is in active-backup mode. Refer to
/usr/share/doc/kernel-doc-<kernel-version>/Documentation/networking/
bonding.txt

for more information.

• multicast= — Specifies an integer value for the type of multicast support desired.

Acceptable values for this parameter are:

• 0 — Disables multicast support.

• 1 — Enables multicast support, but only on the active slave.

• 2 — Enables multicast support on all slaves (the default).

Important

It is essential that either the arp_interval and arp_ip_target or miimon parameters are specified.
Failure to due so can cause degradation of network performance in the event a link fails.

Refer to:

/usr/share/doc/kernel-doc-<kernel-version>/Documentation/networking/
bonding.txt

for detailed instructions regarding bonding interfaces.

Index

Symbols
.fetchmailrc, 168

global options, 169
server options, 169
user options, 170

.procmailrc, 171
/boot/ directory, 20
/etc/named.conf

(see BIND)
/etc/pam.conf, 253

(see also PAM)
/etc/pam.d, 253

(see also PAM)
/etc/sysconfig/ directory

(see sysconfig directory)
/lib/security/, 253

(see also PAM)
/lib64/security/, 253

(see also PAM)
/proc/ directory

(see proc file system)

A
aboot, 3
access control, 263
AccessFileName

Apache configuration directive, 146
Action

Apache configuration directive, 151
activating your subscription, vii
AddDescription

Apache configuration directive, 149
AddEncoding

Apache configuration directive, 150
AddHandler

Apache configuration directive, 150
AddIcon

Apache configuration directive, 149
AddIconByEncoding

Apache configuration directive, 149
AddIconByType

Apache configuration directive, 149
AddLanguage

Apache configuration directive, 150
AddType

Apache configuration directive, 150
Alias

Apache configuration directive, 148
Allow

Apache configuration directive, 145

AllowOverride
Apache configuration directive, 144

Apache
(see Apache HTTP Server)

Apache HTTP Server
1.3

migration to 2.0, 127
2.0

features of, 125
file system changes, 126
migration from 1.3, 127
MPM specific directives, 140
packaging changes, 126

additional resources, 157
related books, 157
useful websites, 157

configuration, 138
introducing, 125
log files

/var/log/httpd/error_log, 138
combined log file format, 147, 147
format of, 147
troubleshooting with, 138, 139
using log analyzer tools with, 146

migration to 2.0, 127
bind addresses and ports, 127
content negotiation, 131
directory indexing, 130
DSO Support, 128
error documents, 131
LDAP, 136
logging, 130
module system changes, 132
mod_auth_db, 134
mod_auth_dbm, 134
mod_include, 134
mod_perl, 135
mod_proxy, 133
mod_ssl, 133
PHP, 136
removed directives, 129
server-pool size, 128
SuexecUserGroup, 132, 142
UserDir directive, 130
virtual host configuration, 131

Multi-Processing Modules
activating worker MPM, 128
prefork, 128
worker, 128

reloading, 137
restarting, 137
running without security, 155
server status reports, 151
starting, 137
stopping, 137
troubleshooting, 138

324

Apache HTTP Server modules, 154
APXS Apache utility, 155
Authentication Configuration Tool

and LDAP, 208, 208
autofs, 119

(see also NFS)

B
Basic Input/Output System

(see BIOS)
Berkeley Internet Name Domain

(see BIND)
BIND

additional resources, 197
installed documentation, 198
related books, 199
useful websites, 199

common mistakes, 197
configuration files

/etc/named.conf, 182, 183
/var/named/ directory, 182
zone files, 189

configuration of
reverse name resolution, 193
zone file directives, 189
zone file examples, 192
zone file resource records, 190
zone statements sample, 187

features, 196
DNS enhancements, 196
IPv6, 197
multiple views, 196
security, 196

introducing, 181, 181
named daemon, 182
nameserver

definition of, 181
nameserver types

caching-only, 182
forwarding, 182
master, 182
slave, 182

rndc program, 194
/etc/rndc.conf, 194
command line options, 195
configuring keys, 194
configuring named to use, 194

root nameserver
definition of, 181

zones
definition of, 181

BIOS
definition of, 1

(see also boot process)

block devices, 45
(see also /proc/devices)

definition of, 45
boot loaders, 9

(see also GRUB)
definition of, 9
types of

ELILO, 9
GRUB, 9
OS/400, 9
YABOOT, 9
z/IPL, 9

boot process, 1, 1
(see also boot loaders)

chain loading, 9
direct loading, 9
for x86, 1
stages of, 1, 1

/sbin/init command, 3
BIOS, 1
boot loader, 2
EFI shell, 1
kernel, 3

BrowserMatch
Apache configuration directive, 151

C
cache directives for Apache, 152
CacheNegotiatedDocs

Apache configuration directive, 146
caching-only nameserver

(see BIND)
CGI scripts

allowing execution outside cgi-bin, 144
outside the ScriptAlias, 150

channel bonding
interface

configuration of, 105
module configuration, 320
module directives, 320

character devices, 45
(see also /proc/devices)

definition of, 45
chkconfig, 8

(see also services)
configuration

Apache HTTP Server, 138
virtual hosts, 155

configuration directives, Apache, 139
AccessFileName, 146
Action, 151
AddDescription, 149
AddEncoding, 150
AddHandler, 150

325

AddIcon, 149
AddIconByEncoding, 149
AddIconByType, 149
AddLanguage, 150
AddType, 150
Alias, 148
Allow, 145
AllowOverride, 144
BrowserMatch, 151
CacheNegotiatedDocs, 146
CustomLog, 147
DefaultIcon, 149
DefaultType, 146
Deny, 145
Directory, 144
DirectoryIndex, 145
DocumentRoot, 143
ErrorDocument, 151
ErrorLog, 146
ExtendedStatus, 142
for cache functionality, 152
Group, 142
HeaderName, 150
HostnameLookups, 146
IfDefine, 142
IfModule, 140
Include, 141
IndexIgnore, 150
IndexOptions, 148
KeepAlive, 139

(see also KeepAliveTimeout)
troubleshooting, 139

KeepAliveTimeout, 139
LanguagePriority, 150
Listen, 141
LoadModule, 141
Location, 151
LogFormat

format options, 147
LogLevel, 147
MaxClients, 140
MaxKeepAliveRequests, 139
MaxRequestsPerChild, 140
MaxSpareServers, 140
MaxSpareThreads, 141
MinSpareServers, 140
MinSpareThreads, 141
NameVirtualHost, 153
Options, 144
Order, 145
PidFile, 139
Proxy, 152
ProxyRequests, 152
ReadmeName, 150
Redirect, 148
ScriptAlias, 148

ServerAdmin, 143
ServerName, 143
ServerRoot, 139
ServerSignature, 148
SetEnvIf, 153
SSL configuration, 153
StartServers, 140
SuexecUserGroup, 132, 142
ThreadsPerChild, 141
Timeout, 139
TypesConfig, 146
UseCanonicalName, 143
User, 142
UserDir, 145
VirtualHost, 153

conventions
document, iv

copying and pasting text
when using X, viii

CustomLog
Apache configuration directive, 147

D
DefaultIcon

Apache configuration directive, 149
DefaultType

Apache configuration directive, 146
Denial of Service

prevention using xinetd, 275
(see also xinetd)

Denial of Service attack, 71
(see also /proc/sys/net/ directory)

definition of, 71
Deny

Apache configuration directive, 145
desktop environments

(see X)
dev directory, 20
devices, local

ownership of, 259
(see also PAM)

directories
/boot/, 20
/dev/, 20
/etc/, 20
/lib/, 20
/media/, 20
/mnt/, 20
/opt/, 21
/proc/, 21
/sbin/, 21
/srv/, 22
/sys/, 22
/usr/, 22

326

/usr/local/, 23
/var/, 23

Directory
Apache configuration directive, 144

DirectoryIndex
Apache configuration directive, 145

display managers
(see X)

DNS, 181
(see also BIND)

introducing, 181
documentation

experienced user, iv
finding appropriate, ii
first-time users, ii

newsgroups, iii
websites, iii

guru, iv
DocumentRoot

Apache configuration directive, 143
changing, 155
changing shared, 157

DoS
(see Denial of Service)

DoS attack
(see Denial of Service attack)

drag and drop, viii
drivers

(see kernel modules)
DSOs

loading, 155

E
EFI shell

definition of, 1
(see also boot process)

ELILO, 3, 9
(see also boot loaders)

email
additional resources, 178

installed documentation, 178
related books, 180
useful websites, 179

Fetchmail, 167
history of, 159
Postfix, 166
Procmail, 171
program classifications, 161
protocols, 159

IMAP, 160
POP, 160
SMTP, 159

security, 177
clients, 177

servers, 177
Sendmail, 162
spam

filtering out, 176
types

Mail Delivery Agent, 161
Mail Transfer Agent, 161
Mail User Agent, 162

epoch, 56
(see also /proc/stat)

definition of, 56
ErrorDocument

Apache configuration directive, 151
ErrorLog

Apache configuration directive, 146
etc directory, 20
Ethernet

(see network)
Ethernet modules

(see kernel modules)
exec-shield

enabling, 68
introducing, 68

execution domains, 46
(see also /proc/execdomains)

definition of, 46
ExtendedStatus

Apache configuration directive, 142
Extensible Firmware Interface shell

(see EFI shell)

F
feedback

contact information, ix
Fetchmail, 167

additional resources, 178
command options, 170

informational, 170
special, 171

configuration options, 168
global options, 169
server options, 169
user options, 170

FHS, 19, 19
(see also file system)
(see also file system)

file system
FHS standard, 19
hierarchy, 19
organization, 19
structure, 19
virtual

(see proc file system)
files, proc file system

327

changing, 42, 75
viewing, 41, 75

findsmb program, 230
forwarding nameserver

(see BIND)
frame buffer device, 46

(see also /proc/fb)
FrontPage, 137
fstab, 118

(see also NFS)
FTP, 237

(see also vsftpd)
active mode, 237
command port, 237
data port, 237
definition of, 237
introducing, 237
passive mode, 237
server software

Red Hat Content Accelerator, 238
vsftpd, 238

G
GNOME, 86

(see also X)
Group

Apache configuration directive, 142
groups

additional resources, 83
installed documentation, 83
related books, 84

GID, 77
introducing, 77
shared directories, 81
standard, 79
tools for management of

groupadd, 77, 81
redhat-config-users, 81
User Manager, 77

user private, 81
GRUB, 2, 9

(see also boot loaders)
(see also boot loaders)

additional resources, 17
installed documentation, 18
related books, 18
useful websites, 18

boot process, 9
Changing Runlevels at Boot Time, 17
changing runlevels with, 13
commands, 14
configuration file

/boot/grub/grub.conf, 15
structure, 15

definition of, 9

features, 10

installing, 11

interfaces, 13

command line, 13

menu, 13

menu entry editor, 13

order of, 14

menu configuration file, 15

directives, 16

role in boot process, 2

terminology, 11

devices, 11

files, 12

root file system, 13

grub.conf, 15

(see also GRUB)

H

halt, 8

(see also shutdown)

HeaderName

Apache configuration directive, 150

hierarchy, file system, 19

HostnameLookups

Apache configuration directive, 146

hosts access files

(see TCP wrappers)

hosts.allow

(see TCP wrappers)

hosts.deny

(see TCP wrappers)

httpd.conf

(see configuration directives, Apache)

hugepages

configuration of, 73

328

I
IfDefine

Apache configuration directive, 142
ifdown, 108
IfModule

Apache configuration directive, 140
ifup, 108
Include

Apache configuration directive, 141
IndexIgnore

Apache configuration directive, 150
IndexOptions

Apache configuration directive, 148
init command, 3

(see also boot process)
configuration files

/etc/inittab, 6
role in boot process, 3

(see also boot process)
runlevels

directories for, 6
runlevels accessed by, 7
SysV init

definition of, 6
initrd directory, 24
introduction, i
ip6tables

control scripts
panic, 288
restart, 288
save, 288
start, 288
status, 288
stop, 288

introducing, 290
ipchains

(see iptables)
IPsec

(see network)
iptables

/sbin/iptables-restore, 287
/sbin/iptables-save, 287
additional resources, 290

installed documentation, 290
useful websites, 290

chains
target, 279

compared with ipchains, 280
configuration files

/etc/sysconfig/iptables, 287
/etc/sysconfig/iptables-config, 289
/etc/sysconfig/iptables.save, 287

control scripts
panic, 288
restart, 288

save, 287, 288
start, 288
status, 288
stop, 288

match options, 284
modules, 285

options, 281
commands, 282
listing, 287
parameters, 283
structure of, 281
target, 286

overview of, 279
packet filtering basics, 279
protocols

ICMP, 285
TCP, 284
UDP, 285

rules list, 279
saving rules, 287
tables, 279

K
KDE, 86

(see also X)
KeepAlive

Apache configuration directive, 139
KeepAliveTimeout

Apache configuration directive, 139
Kerberos

additional resources, 297
installed documentation, 298
useful websites, 299

advantages of, 291
and PAM, 295
Authentication Server (AS), 294
clients set up, 297
definition of, 291
disadvantages of, 291
how it works, 294
Key Distribution Center (KDC), 294
server set up, 295
terminology, 292
Ticket-granting Server (TGS), 294
Ticket-granting Ticket (TGT), 294

kernel
role in boot process, 3

kernel modules
Ethernet modules

parameters, 318
supporting multiple cards, 320

introducing, 317
module parameters

specifying, 317

329

SCSI modules
parameters, 318

types of, 317
kwin, 86

(see also X)

L
LanguagePriority

Apache configuration directive, 150
LDAP

additional resources, 210
installed documentation, 210
related books, 211
useful websites, 211

advantages of, 201
applications

ldapadd, 202
ldapdelete, 202
ldapmodify, 202
ldappasswd, 202
ldapsearch, 202
OpenLDAP suite, 202
slapadd, 202
slapcat, 202
slapd, 202
slapindex, 202
slappasswd, 202
slurpd, 202
utilities, 202

authentication using, 208
Authentication Configuration Tool, 208
editing /etc/ldap.conf, 208
editing /etc/nsswitch.conf, 208
editing /etc/openldap/ldap.conf, 208
editing slapd.conf, 208
packages, 208
PAM, 208
setting up clients, 208

client applications, 205
configuration files

/etc/ldap.conf, 205
/etc/openldap/ldap.conf, 205
/etc/openldap/schema/ directory, 205, 205
/etc/openldap/slapd.conf, 205, 206

daemons, 202
definition of, 201
LDAPv2, 201
LDAPv3, 201
LDIF

format of, 202
OpenLDAP features, 201
setting up, 206

migrating older directories, 209
terminology, 202

upgrading directories, 209
using with Apache HTTP Server, 204
using with NSS, 204
using with PAM, 204
using with PHP4, 204

ldapadd command, 202
(see also LDAP)

ldapdelete command, 202
(see also LDAP)

ldapmodify command, 202
(see also LDAP)

ldappasswd command, 202
(see also LDAP)

ldapsearch command, 202
(see also LDAP)

lib directory, 20
Lightweight Directory Access Protocol

(see LDAP)
LILO, 2

(see also boot loaders)
role in boot process, 2

Listen
Apache configuration directive, 141

LoadModule
Apache configuration directive, 141

Location
Apache configuration directive, 151

LogFormat
Apache configuration directive, 147

LogLevel
Apache configuration directive, 147

lspci, 54

M
Mail Delivery Agent

(see email)
Mail Transfer Agent

(see email)
Mail User Agent

(see email)
make_smbcodepage program, 230
make_unicodemap program, 230
Master Boot Record

(see MBR)
(see MBR)

master nameserver
(see BIND)

MaxClients
Apache configuration directive, 140

MaxKeepAliveRequests
Apache configuration directive, 139

MaxRequestsPerChild
Apache configuration directive, 140

MaxSpareServers

330

Apache configuration directive, 140
MaxSpareThreads

Apache configuration directive, 141
MBR

definition of, 1, 1
(see also boot loaders)
(see also boot process)

MDA
(see Mail Delivery Agent)

media directory, 20
metacity, 86

(see also X)
MinSpareServers

Apache configuration directive, 140
MinSpareThreads

Apache configuration directive, 141
mnt directory, 20
module parameters

(see kernel modules)
modules

(see kernel modules)
(see kernel modules)

Apache
loading, 155
the own, 155

default, 154
mouse

how to use, viii
MTA

(see Mail Transfer Agent)
MUA

(see Mail User Agent)
mwm, 86

(see also X)

N
named daemon

(see BIND)
named.conf

(see BIND)
nameserver

(see BIND)
NameVirtualHost

Apache configuration directive, 153
net program, 230
netfilter

(see iptables)
network

additional resources, 110
commands

/sbin/ifdown, 108
/sbin/ifup, 108
/sbin/service network, 108

configuration, 102

functions, 110
interfaces, 102

alias, 106
channel bonding, 105
clone, 106
dialup, 107
Ethernet, 102
IPsec, 104

scripts, 101
Network File System

(see NFS)
NFS

additional resources, 123
installed documentation, 123
related books, 123
useful websites, 123

client
/etc/fstab, 118
autofs, 119
configuration, 118
mount options, 120

condrestart, 114
how it works, 111
introducing, 111
portmap, 113
reloading, 114
required services, 112
restarting, 114
security, 121

file permissions, 122
host access, 121
NFSv2/NFSv3 host access, 121
NFSv4 host access, 122

server configuration, 115
/etc/exports, 115
exportfs command, 117
exportfs command with NFSv4, 117

starting, 114
status, 114
stopping, 114
TCP, 111
UDP, 111

NIC modules
(see kernel modules)

nmblookup program, 231
non-secure Web server

disabling, 157
ntsysv, 8

(see also services)

331

O
objects, dynamically shared

(see DSOs)
OpenLDAP

(see LDAP)
OpenSSH, 301

(see also SSH)
configuration files for, 304

opt directory, 21
Options

Apache configuration directive, 144
Order

Apache configuration directive, 145
OS/400, 9

(see also boot loaders)

P
packet filtering

(see iptables)
PAM

additional resources, 261
installed documentation, 261
useful websites, 261

advantages of, 253
configuration files, 253
control flags, 255
definition of, 253
Kerberos and, 295
modules, 254

arguments, 255
components, 254
creating, 258
interfaces, 254
location of, 255
stacking, 254, 256

pam_console
definition of, 259

pam_timestamp
authentication icon and, 258
definition of, 258
destroying timestamps, 259
directives, 259

pam_timestamp_check
destroying timestamp using, 259

sample configuration files, 256
service files, 253
shadow passwords, 256

pam_console
(see PAM)

pam_timestamp
(see PAM)

pam_timestamp_check
(see PAM)

password, 256

(see also PAM)
shadow passwords, 256

passwords
shadow, 82

pdbedit program, 231
PidFile

Apache configuration directive, 139
Pluggable Authentication Modules

(see PAM)
portmap, 113

(see also NFS)
NFS, 113
rpcinfo, 113
status, 114

Postfix, 166
default installation, 166

prefdm
(see X)

proc directory, 21
proc file system

/proc/apm, 43
/proc/buddyinfo, 43
/proc/bus/ directory, 60
/proc/cmdline, 43
/proc/cpuinfo, 44
/proc/crypto, 45
/proc/devices

block devices, 45
character devices, 45

/proc/dma, 46
/proc/driver/ directory, 61
/proc/execdomains, 46
/proc/fb, 46
/proc/filesystems, 46
/proc/fs/ directory, 61
/proc/ide/ directory, 61

device directories, 62
/proc/interrupts, 47
/proc/iomem, 48
/proc/ioports, 48
/proc/irq/ directory, 63
/proc/kcore, 49
/proc/kmsg, 49
/proc/loadavg, 49
/proc/locks, 50
/proc/mdstat, 50
/proc/meminfo, 50
/proc/misc, 52
/proc/modules, 52
/proc/mounts, 53
/proc/mtrr, 53
/proc/net/ directory, 63
/proc/partitions, 54
/proc/pci

viewing using lspci, 54
/proc/scsi/ directory, 64

332

/proc/self/ directory, 60
/proc/slabinfo, 55
/proc/stat, 56
/proc/swaps, 57
/proc/sys/ directory, 65, 75

(see also sysctl)
/proc/sys/dev/ directory, 66
/proc/sys/fs/ directory, 67
/proc/sys/kernel/ directory, 68
/proc/sys/kernel/exec-shield, 68
/proc/sys/kernel/sysrq

(see system request key)
/proc/sys/net/ directory, 71
/proc/sys/vm/ directory, 73

/proc/sysrq-trigger, 57
/proc/sysvipc/ directory, 74
/proc/tty/ directory, 75
/proc/uptime, 58
/proc/version, 58
additional resources, 76

installed documentation, 76
useful websites, 76

changing files within, 42, 65, 75
files within, top-level, 42
introduced, 41
process directories, 58
subdirectories within, 58
viewing files within, 41

Procmail, 171
additional resources, 178
configuration, 171
recipes, 172

delivering, 173
examples, 175
flags, 173
local lockfiles, 174
non-delivering, 173
SpamAssassin, 176
special actions, 174
special conditions, 174

programs
running at boot time, 6

Proxy
Apache configuration directive, 152

proxy server, 152, 152
ProxyRequests

Apache configuration directive, 152
public_html directories, 145

R
rc.local

modifying, 6
rc.serial, 6

(see also setserial command)
ReadmeName

Apache configuration directive, 150
Red Hat Enterprise Linux-specific file locations

/etc/sysconfig/, 24
(see also sysconfig directory)

/var/lib/rpm/, 24
/var/spool/up2date, 24

Redirect
Apache configuration directive, 148

registering your subscription, vii
root nameserver

(see BIND)
rpcclient program, 232
rpcinfo, 113
runlevels

(see init command)
changing with GRUB, 13
configuration of, 8

(see also services)

S
Samba

(see Samba)
Abilities, 213
Account Information Databases, 226

ldapsam, 226
ldapsam_compat, 226
mysqlsam, 226
Plain Text, 226
smbpasswd, 226
tdbsam, 226
xmlsam, 226

Additional Resources, 235
installed documentation, 235
Red Hat resources, 235
related books, 236
useful websites, 236

Backward Compatible Database Backends, 226
Browsing, 227
CUPS Printing Support, 229

CUPS smb.conf, 229
daemon, 214

nmbd, 214
overview, 214
smbd, 214
winbindd, 214

Introduction, 213
Network Browsing, 227

Domain Browsing, 228

333

WINS, 228
Workgroup Browsing, 227

New Database Backends, 226
Programs, 230

findsmb, 230
make_smbcodepage, 230
make_unicodemap, 230
net, 230
nmblookup, 231
pdbedit, 231
rpcclient, 232
smbcacls, 233
smbclient, 233
smbcontrol, 233
smbgroupedit, 233
smbmount, 233
smbpasswd, 233
smbspool, 234
smbstatus, 234
smbtar, 234
testparm, 234
testprns, 235
wbinfo, 235

Reference, 213
Security Modes, 224

Active Directory Security Mode, 225
Domain Security Mode, 225
Server Security Mode, 225
Share-Level Security, 224
User Level Security, 224

Server Types, 215
Domain Controller, 220
Domain Member, 218
Stand Alone, 215

service
conditional restarting, 214
reloading, 214
restarting, 214
starting, 214
stopping, 214

smb.conf, 215
Active Directory Member Server example, 218
Anonymous Print Server example, 216
Anonymous Read Only example, 216
Anonymous Read/Write example, 216
BDC using LDAP, 223
NT4-style Domain Member example, 219
PDC using Active Directory, 224
PDC using LDAP, 222
PDC using tdbsam, 220
Secure File and Print Server example, 217

WINS, 228
sbin directory, 21
ScriptAlias

Apache configuration directive, 148
SCSI modules

(see kernel modules)
security

running Apache without, 155
SELinux, 309

additional resources, 312
documentation, 312
installed documentation, 312
websites, 313

introduction, 309
related files, 309

/etc/selinux/ Directory, 311
/etc/sysconfig/selinux, 310
/selinux/ pseudo-file system, 309
configuration, 310
utilities, 312

Sendmail, 162
additional resources, 178
aliases, 164
common configuration changes, 163
default installation, 163
LDAP and, 165
limitations, 162
masquerading, 164
purpose, 162
spam, 165
with UUCP, 163

serial ports
(see setserial command)

server side includes, 144, 150
ServerAdmin

Apache configuration directive, 143
ServerName

Apache configuration directive, 143
ServerRoot

Apache configuration directive, 139
ServerSignature

Apache configuration directive, 148
services

configuring with chkconfig, 8
configuring with ntsysv, 8
configuring with Services Configuration Tool, 8

Services Configuration Tool, 8
(see also services)

SetEnvIf
Apache configuration directive, 153

setserial command
configuring, 6

shadow
(see password)

shadow passwords
overview of, 82

shutdown, 8
(see also halt)

slab pools
(see /proc/slabinfo)

slapadd command, 202

334

(see also LDAP)
slapcat command, 202

(see also LDAP)
slapd command, 202

(see also LDAP)
slapindex command, 202

(see also LDAP)
slappasswd command, 202

(see also LDAP)
slave nameserver

(see BIND)
slurpd command, 202

(see also LDAP)
smbcacls program, 233
smbclient program, 233
smbcontrol program, 233
smbgroupedit program, 233
smbmount program, 233
smbpasswd program, 233
smbspool program, 234
smbstatus program, 234
smbtar program, 234
SpamAssassin

using with Procmail, 176
srv directory, 22
SSH protocol, 301

additional resources, 307
installed documentation, 307
related books, 308
useful websites, 308

authentication, 303
configuration files, 304
connection sequence, 302
features of, 301
insecure protocols and, 307
layers of

channels, 304
transport layer, 303

port forwarding, 305
requiring for remote login, 307
security risks, 301
version 1, 302
version 2, 302
X11 forwarding, 305

SSL configuration, 153
StartServers

Apache configuration directive, 140
startx

(see X)
stunnel, 177
subscription registration, vii
SuexecUserGroup

Apache configuration directive, 132, 142
sys directory, 22
sysconfig directory, 24

/etc/sysconfig/amd, 28

/etc/sysconfig/apm-scripts/ directory, 40
/etc/sysconfig/apmd, 28
/etc/sysconfig/arpwatch, 28
/etc/sysconfig/authconfig, 29
/etc/sysconfig/autofs, 29
/etc/sysconfig/cbq/ directory, 40
/etc/sysconfig/clock, 30
/etc/sysconfig/desktop, 30
/etc/sysconfig/devlabel, 31
/etc/sysconfig/dhcpd, 31
/etc/sysconfig/exim, 31
/etc/sysconfig/firstboot, 31
/etc/sysconfig/gpm, 31
/etc/sysconfig/harddisks, 32
/etc/sysconfig/hwconf, 32
/etc/sysconfig/init, 32
/etc/sysconfig/ip6tables-config, 33
/etc/sysconfig/iptables, 287
/etc/sysconfig/iptables-config, 33
/etc/sysconfig/irda, 34
/etc/sysconfig/keyboard, 34
/etc/sysconfig/kudzu, 35
/etc/sysconfig/mouse, 35
/etc/sysconfig/named, 36
/etc/sysconfig/netdump, 36
/etc/sysconfig/network, 36
/etc/sysconfig/network-scripts/ directory, 101
/etc/sysconfig/ntpd, 37
/etc/sysconfig/pcmcia, 37
/etc/sysconfig/radvd, 37
/etc/sysconfig/rawdevices, 37
/etc/sysconfig/rhn/ directory, 40
/etc/sysconfig/samba, 38
/etc/sysconfig/selinux, 38
/etc/sysconfig/sendmail, 38
/etc/sysconfig/spamassassin, 38
/etc/sysconfig/squid, 38
/etc/sysconfig/system-config-securitylevel , 39
/etc/sysconfig/system-config-users, 39
/etc/sysconfig/system-logviewer, 39
/etc/sysconfig/tux, 39
/etc/sysconfig/vncservers, 39
/etc/sysconfig/xinetd, 40
additional information about, 27
additional resources, 40

installed documentation, 40
directories in, 40
files found in, 27

sysconfig/ directory
/etc/sysconfig/network-scripts/ directory, 40

(see also network)
/etc/sysconfig/networking/ directory, 40

sysctl
configuring with /etc/sysctl.conf, 75
controlling /proc/sys/, 75

SysRq

335

(see system request key)
System Request Key

definition of, 65
enabling, 65
setting timing for, 68

SysV init
(see init command)

T
TCP wrappers, 270

(see also xinetd)
additional resources, 276

installed documentation, 276
related books, 276
useful websites, 276

advantages of, 264
configuration files

/etc/hosts.allow, 264, 264
/etc/hosts.deny, 264, 264
access control option, 269
expansions, 269
formatting rules within, 265
hosts access files, 264
log option, 268
operators, 268
option fields, 268
patterns, 266
shell command option, 269
spawn option, 269
twist option, 269
wildcards, 266

definition of, 264
introducing, 263

testparm program, 234
testprns program, 235
ThreadsPerChild

Apache configuration directive, 141
Timeout

Apache configuration directive, 139
TLB cache

(see hugepages)
troubleshooting

error log, 146
twm, 86

(see also X)
TypesConfig

Apache configuration directive, 146

U
UseCanonicalName

Apache configuration directive, 143
User

Apache configuration directive, 142
user private groups

(see groups)
and shared directories, 81

UserDir
Apache configuration directive, 145

users
/etc/passwd, 78
additional resources, 83

installed documentation, 83
related books, 84

introducing, 77
personal HTML directories, 145
standard, 78
tools for management of

User Manager, 77
useradd, 77

UID, 77
usr directory, 22
usr/local/ directory, 23

V
var directory, 23
var/lib/rpm/ directory, 24
var/spool/up2date/ directory, 24
virtual file system

(see proc file system)
virtual files

(see proc file system)
virtual hosts

configuring, 155
Listen command, 156
name-based, 155
Options, 144
server side includes, 150

VirtualHost
Apache configuration directive, 153

vsftpd, 238
(see also FTP)

additional resources, 248
installed documentation, 248
related books, 249
useful websites, 249

condrestart, 239
configuration file

/etc/vsftpd/vsftpd.conf, 241
access controls, 242
anonymous user options, 243
daemon options, 241
directory options, 244

336

file transfer options, 245
format of, 241
local user options, 243
logging options, 245
login options, 242
network options, 246

multihome configuration, 240
restarting, 239
RPM

files installed by, 239
security features, 238
starting, 239
starting multiple copies of, 240
status, 239
stopping, 239

W
wbinfo program, 235
webmaster

email address for, 143
window managers

(see X)

X
X

/etc/X11/xorg.conf
boolean values for, 87
Device, 91
DRI, 93
Files section, 89
InputDevice section, 90
introducing, 87
Module section, 89
Monitor, 90
Screen, 92
Section tag, 87
ServerFlags section, 88
ServerLayout section, 88
structure of, 87

additional resources, 98
installed documentation, 98
related books, 98
useful websites, 98

configuration files
/etc/X11/ directory, 87
/etc/X11/xorg.conf, 87
options within, 87
server options, 87

desktop environments
GNOME, 86
KDE, 86

display managers
configuration of preferred, 97

definition of, 97
GNOME, 97
KDE, 97
prefdm script, 97
xdm, 97

fonts
core X font subsystem, 95
Fontconfig, 93
Fontconfig, adding fonts to, 94
FreeType, 93
introducing, 93
X Font Server, 95
X Render Extension, 93
xfs, 95
xfs configuration, 95
xfs, adding fonts to, 96
Xft, 93

introducing, 85
runlevels

3, 96
5, 97

runlevels and, 96
utilities

system-config-display, 85
window managers

kwin, 86
metacity, 86
mwm, 86
twm, 86

X clients, 85, 86
desktop environments, 86
startx command, 96
window managers, 86
xinit command, 96

X server, 85
features of, 85

X Window System
(see X)

X.500
(see LDAP)

X.500 Lite
(see LDAP)

xinetd, 270
(see also TCP wrappers)

additional resources
installed documentation, 276
related books, 276
useful websites, 276

configuration files, 271
/etc/xinetd.conf, 271
/etc/xinetd.d/ directory, 272
access control options, 273
binding options, 274
logging options, 271, 272, 272
redirection options, 274
resource management options, 275

337

DoS attacks and, 275
introducing, 263, 270
relationship with TCP wrappers, 273

xinit
(see X)

Xorg
(see Xorg)

Y
YABOOT, 9

(see also boot loaders)

Z
z/IPL, 9

(see also boot loaders)

Colophon

The manuals are written in DocBook SGML v4.1 format. The HTML and PDF formats are produced
using custom DSSSL stylesheets and custom jade wrapper scripts. The DocBook SGML files are
written in Emacs with the help of PSGML mode.

Garrett LeSage created the admonition graphics (note, tip, important, caution, and warning). They
may be freely redistributed with the Red Hat documentation.

The Red Hat Product Documentation Team consists of the following people:

Sandra A. Moore — Primary Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide
for x86, Itanium™, AMD64, and Intel® Extended Memory 64 Technology (Intel® EM64T); Primary
Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide for the IBM® POWER Archi-
tecture; Primary Writer/Maintainer of the Red Hat Enterprise Linux Installation Guide for the IBM®
S/390® and IBM® eServer™ zSeries® Architectures

John Ha — Primary Writer/Maintainer of the Red Hat Cluster Suite Configuring and Managing a
Cluster; Co-writer/Co-maintainer of the Red Hat Enterprise Linux Security Guide; Maintainer of
custom DocBook stylesheets and scripts

Edward C. Bailey — Primary Writer/Maintainer of the Red Hat Enterprise Linux Introduction to Sys-
tem Administration; Primary Writer/Maintainer of the Release Notes; Contributing Writer to the Red
Hat Enterprise Linux Installation Guide for x86, Itanium™, AMD64, and Intel® Extended Memory
64 Technology (Intel® EM64T)

Karsten Wade — Primary Writer/Maintainer of the Red Hat SELinux Application Development Guide;
Primary Writer/Maintainer of the Red Hat SELinux Policy Guide

Andrius Benokraitis — Primary Writer/Maintainer of the Red Hat Enterprise Linux Reference Guide;
Co-writer/Co-maintainer of the Red Hat Enterprise Linux Security Guide; Contributing Writer to the
Red Hat Enterprise Linux System Administration Guide

Paul Kennedy — Primary Writer/Maintainer of the Red Hat GFS Administrator’s Guide; Contributing
Writer to the Red Hat Cluster Suite Configuring and Managing a Cluster

Mark Johnson — Primary Writer/Maintainer of the Red Hat Enterprise Linux Desktop Configuration
and Administration Guide

Melissa Goldin — Primary Writer/Maintainer of the Red Hat Enterprise Linux Step By Step Guide

The Red Hat Localization Team consists of the following people:

Amanpreet Singh Alam — Punjabi translations

Jean-Paul Aubry — French translations

David Barzilay — Brazilian Portuguese translations

Runa Bhattacharjee — Bengali translations

Chester Cheng — Traditional Chinese translations

Verena Fuehrer — German translations

Kiyoto Hashida — Japanese translations

N. Jayaradha — Tamil translations

Michelle Jiyeen Kim — Korean translations

Yelitza Louze — Spanish translations

Noriko Mizumoto — Japanese translations

Ankitkumar Rameshchandra Patel — Gujarati translations

Rajesh Ranjan — Hindi translations

340

Nadine Richter — German translations

Audrey Simons — French translations

Francesco Valente — Italian translations

Sarah Wang — Simplified Chinese translations

Ben Hung-Pin Wu — Traditional Chinese translations

	Table of Contents
	
	Introduction
	1. Changes To This Manual
	2. Architecturespecific Information
	3. Finding Appropriate Documentation
	3.1. Documentation For FirstTime Linux Users
	3.1.1. Introduction to Linux Websites
	3.1.2. Introduction to Linux Newsgroups

	3.2. For the More Experienced
	3.3. Documentation for Linux Gurus

	4. Document Conventions
	5. Activate Your Subscription
	5.1. Provide a Red Hat Login
	5.2. Provide Your Subscription Number
	5.3. Connect Your System

	6. Using the Mouse
	7. Copying and Pasting Text With X
	8. More to Come
	8.1. We Need Feedback!

	I. System Reference
	Table of Contents
	Chapter 1.
	Boot Process, Init, and Shutdown
	1.1. The Boot Process
	1.2. A Detailed Look at the Boot Process
	1.2.1. The BIOS
	1.2.2. The Boot Loader
	1.2.2.1. Boot Loaders for Other Architectures

	1.2.3. The Kernel
	1.2.4. The /sbin/init Program

	1.3. Running Additional Programs at Boot Time
	1.4. SysV Init Runlevels
	1.4.1. Runlevels
	1.4.2. Runlevel Utilities

	1.5. Shutting Down

	Chapter 2.
	The GRUB Boot Loader
	2.1. Boot Loaders and System Architecture
	2.2. GRUB
	2.2.1. GRUB and the x86 Boot Process
	2.2.2. Features of GRUB

	2.3. Installing GRUB
	2.4. GRUB Terminology
	2.4.1. Device Names
	2.4.2. File Names and Blocklists
	2.4.3. The Root File System and GRUB

	2.5. GRUB Interfaces
	2.5.1. Interfaces Load Order

	2.6. GRUB Commands
	2.7. GRUB Menu Configuration File
	2.7.1. Configuration File Structure
	2.7.2. Configuration File Directives

	2.8. Changing Runlevels at Boot Time
	2.9. Additional Resources
	2.9.1. Installed Documentation
	2.9.2. Useful Websites
	2.9.3. Related Books

	Chapter 3.
	File System Structure
	3.1. Why Share a Common Structure?
	3.2. Overview of File System Hierarchy Standard (FHS)
	3.2.1. FHS Organization
	3.2.1.1. The /boot/ Directory
	3.2.1.2. The /dev/ Directory
	3.2.1.3. The /etc/ Directory
	3.2.1.4. The /lib/ Directory
	3.2.1.5. The /media/ Directory
	3.2.1.6. The /mnt/ Directory
	3.2.1.7. The /opt/ Directory
	3.2.1.8. The /proc/ Directory
	3.2.1.9. The /sbin/ Directory
	3.2.1.10. The /srv/ Directory
	3.2.1.11. The /sys/ Directory
	3.2.1.12. The /usr/ Directory
	3.2.1.13. The /usr/local/ Directory
	3.2.1.14. The /var/ Directory

	3.3. Special File Locations Under Red Hat Enterprise Linux

	Chapter 4.
	The sysconfig Directory
	4.1. Files in the /etc/sysconfig/ Directory
	4.1.1. /etc/sysconfig/amd
	4.1.2. /etc/sysconfig/apmd
	4.1.3. /etc/sysconfig/arpwatch
	4.1.4. /etc/sysconfig/authconfig
	4.1.5. /etc/sysconfig/autofs
	4.1.6. /etc/sysconfig/clock
	4.1.7. /etc/sysconfig/desktop
	4.1.8. /etc/sysconfig/devlabel
	4.1.9. /etc/sysconfig/dhcpd
	4.1.10. /etc/sysconfig/exim
	4.1.11. /etc/sysconfig/firstboot
	4.1.12. /etc/sysconfig/gpm
	4.1.13. /etc/sysconfig/harddisks
	4.1.14. /etc/sysconfig/hwconf
	4.1.15. /etc/sysconfig/i18n
	4.1.16. /etc/sysconfig/init
	4.1.17. /etc/sysconfig/ip6tablesconfig
	4.1.18. /etc/sysconfig/iptablesconfig
	4.1.19. /etc/sysconfig/irda
	4.1.20. /etc/sysconfig/keyboard
	4.1.21. /etc/sysconfig/kudzu
	4.1.22. /etc/sysconfig/mouse
	4.1.23. /etc/sysconfig/named
	4.1.24. /etc/sysconfig/netdump
	4.1.25. /etc/sysconfig/network
	4.1.26. /etc/sysconfig/ntpd
	4.1.27. /etc/sysconfig/pcmcia
	4.1.28. /etc/sysconfig/radvd
	4.1.29. /etc/sysconfig/rawdevices
	4.1.30. /etc/sysconfig/samba
	4.1.31. /etc/sysconfig/selinux
	4.1.32. /etc/sysconfig/sendmail
	4.1.33. /etc/sysconfig/spamassassin
	4.1.34. /etc/sysconfig/squid
	4.1.35. /etc/sysconfig/systemconfigsecuritylevel
	4.1.36. /etc/sysconfig/systemconfigusers
	4.1.37. /etc/sysconfig/systemlogviewer
	4.1.38. /etc/sysconfig/tux
	4.1.39. /etc/sysconfig/vncservers
	4.1.40. /etc/sysconfig/xinetd

	4.2. Directories in the /etc/sysconfig/ Directory
	4.3. Additional Resources
	4.3.1. Installed Documentation

	Chapter 5.
	The proc File System
	5.1. A Virtual File System
	5.1.1. Viewing Virtual Files
	5.1.2. Changing Virtual Files

	5.2. Toplevel Files within the proc File System
	5.2.1. /proc/apm
	5.2.2. /proc/buddyinfo
	5.2.3. /proc/cmdline
	5.2.4. /proc/cpuinfo
	5.2.5. /proc/crypto
	5.2.6. /proc/devices
	5.2.7. /proc/dma
	5.2.8. /proc/execdomains
	5.2.9. /proc/fb
	5.2.10. /proc/filesystems
	5.2.11. /proc/interrupts
	5.2.12. /proc/iomem
	5.2.13. /proc/ioports
	5.2.14. /proc/kcore
	5.2.15. /proc/kmsg
	5.2.16. /proc/loadavg
	5.2.17. /proc/locks
	5.2.18. /proc/mdstat
	5.2.19. /proc/meminfo
	5.2.20. /proc/misc
	5.2.21. /proc/modules
	5.2.22. /proc/mounts
	5.2.23. /proc/mtrr
	5.2.24. /proc/partitions
	5.2.25. /proc/pci
	5.2.26. /proc/slabinfo
	5.2.27. /proc/stat
	5.2.28. /proc/swaps
	5.2.29. /proc/sysrqtrigger
	5.2.30. /proc/uptime
	5.2.31. /proc/version

	5.3. Directories within /proc/
	5.3.1. Process Directories
	5.3.1.1. /proc/self/

	5.3.2. /proc/bus/
	5.3.3. /proc/driver/
	5.3.4. /proc/fs
	5.3.5. /proc/ide/
	5.3.5.1. Device Directories

	5.3.6. /proc/irq/
	5.3.7. /proc/net/
	5.3.8. /proc/scsi/
	5.3.9. /proc/sys/
	5.3.9.1. /proc/sys/dev/
	5.3.9.2. /proc/sys/fs/
	5.3.9.3. /proc/sys/kernel/
	5.3.9.4. /proc/sys/net/
	5.3.9.5. /proc/sys/vm/

	5.3.10. /proc/sysvipc/
	5.3.11. /proc/tty/

	5.4. Using the sysctl Command
	5.5. Additional Resources
	5.5.1. Installed Documentation
	5.5.2. Useful Websites

	Chapter 6.
	Users and Groups
	6.1. User and Group Management Tools
	6.2. Standard Users
	6.3. Standard Groups
	6.4. User Private Groups
	6.4.1. Group Directories

	6.5. Shadow Passwords
	6.6. Additional Resources
	6.6.1. Installed Documentation
	6.6.2. Related Books

	Chapter 7.
	The X Window System
	7.1. The X11R6.8 Release
	7.2. Desktop Environments and Window Managers
	7.2.1. Desktop Environments
	7.2.2. Window Managers

	7.3. X Server Configuration Files
	7.3.1. xorg.conf
	7.3.1.1. The Structure
	7.3.1.2. ServerFlags
	7.3.1.3. ServerLayout
	7.3.1.4. Files
	7.3.1.5. Module
	7.3.1.6. InputDevice
	7.3.1.7. Monitor
	7.3.1.8. Device
	7.3.1.9. Screen
	7.3.1.10. DRI

	7.4. Fonts
	7.4.1. Fontconfig
	7.4.1.1. Adding Fonts to Fontconfig

	7.4.2. Core X Font System
	7.4.2.1. xfs Configuration
	7.4.2.2. Adding Fonts to xfs

	7.5. Runlevels and X
	7.5.1. Runlevel 3
	7.5.2. Runlevel 5

	7.6. Additional Resources
	7.6.1. Installed Documentation
	7.6.2. Useful Websites
	7.6.3. Related Books

	II. Network Services Reference
	Table of Contents
	Chapter 8.
	Network Interfaces
	8.1. Network Configuration Files
	8.2. Interface Configuration Files
	8.2.1. Ethernet Interfaces
	8.2.2. IPsec Interfaces
	8.2.3. Channel Bonding Interfaces
	8.2.4. Alias and Clone Files
	8.2.5. Dialup Interfaces
	8.2.6. Other Interfaces

	8.3. Interface Control Scripts
	8.4. Network Function Files
	8.5. Additional Resources
	8.5.1. Installed Documentation

	Chapter 9.
	Network File System (NFS)
	9.1. How It Works
	9.1.1. Required Services
	9.1.2. NFS and portmap
	9.1.2.1. Troubleshooting NFS and portmap

	9.2. Starting and Stopping NFS
	9.3. NFS Server Configuration
	9.3.1. The /etc/exports Configuration File
	9.3.2. The exportfs Command
	9.3.2.1. Using exportfs with NFSv4

	9.4. NFS Client Configuration Files
	9.4.1. /etc/fstab
	9.4.2. autofs
	9.4.3. Common NFS Mount Options

	9.5. Securing NFS
	9.5.1. Host Access
	9.5.1.1. Using NFSv2 or NFSv3
	9.5.1.2. Using NFSv4

	9.5.2. File Permissions

	9.6. Additional Resources
	9.6.1. Installed Documentation
	9.6.2. Useful Websites
	9.6.3. Related Books

	Chapter 10.
	Apache HTTP Server
	10.1. Apache HTTP Server 2.0
	10.1.1. Features of Apache HTTP Server 2.0
	10.1.2. Packaging Changes in Apache HTTP Server 2.0
	10.1.3. File System Changes in Apache HTTP Server 2.0

	10.2. Migrating Apache HTTP Server 1.3 Configuration Files
	10.2.1. Global Environment Configuration
	10.2.1.1. Interface and Port Binding
	10.2.1.2. ServerPool Size Regulation
	10.2.1.3. Dynamic Shared Object (DSO) Support
	10.2.1.4. Other Global Environment Changes

	10.2.2. Main Server Configuration
	10.2.2.1. UserDir Mapping
	10.2.2.2. Logging
	10.2.2.3. Directory Indexing
	10.2.2.4. Content Negotiation
	10.2.2.5. Error Documents

	10.2.3. Virtual Host Configuration
	10.2.4. Modules and Apache HTTP Server 2.0
	10.2.4.1. The suexec Module
	10.2.4.2. The modssl Module
	10.2.4.3. The modproxy Module
	10.2.4.4. The modinclude Module
	10.2.4.5. The modauthdbm and modauthdb Modules
	10.2.4.6. The modperl Module
	10.2.4.7. The modpython Module
	10.2.4.8. PHP
	10.2.4.9. The modauthzldap Module

	10.3. After Installation
	10.4. Starting and Stopping httpd
	10.5. Configuration Directives in httpd.conf
	10.5.1. General Configuration Tips
	10.5.2. ServerRoot
	10.5.3. PidFile
	10.5.4. Timeout
	10.5.5. KeepAlive
	10.5.6. MaxKeepAliveRequests
	10.5.7. KeepAliveTimeout
	10.5.8. IfModule
	10.5.9. MPM Specific ServerPool Directives
	10.5.9.1. StartServers
	10.5.9.2. MaxRequestsPerChild
	10.5.9.3. MaxClients
	10.5.9.4. MinSpareServers and MaxSpareServers
	10.5.9.5. MinSpareThreads and MaxSpareThreads
	10.5.9.6. ThreadsPerChild

	10.5.10. Listen
	10.5.11. Include
	10.5.12. LoadModule
	10.5.13. ExtendedStatus
	10.5.14. IfDefine
	10.5.15. SuexecUserGroup
	10.5.16. User
	10.5.17. Group
	10.5.18. ServerAdmin
	10.5.19. ServerName
	10.5.20. UseCanonicalName
	10.5.21. DocumentRoot
	10.5.22. Directory
	10.5.23. Options
	10.5.24. AllowOverride
	10.5.25. Order
	10.5.26. Allow
	10.5.27. Deny
	10.5.28. UserDir
	10.5.29. DirectoryIndex
	10.5.30. AccessFileName
	10.5.31. CacheNegotiatedDocs
	10.5.32. TypesConfig
	10.5.33. DefaultType
	10.5.34. HostnameLookups
	10.5.35. ErrorLog
	10.5.36. LogLevel
	10.5.37. LogFormat
	10.5.38. CustomLog
	10.5.39. ServerSignature
	10.5.40. Alias
	10.5.41. ScriptAlias
	10.5.42. Redirect
	10.5.43. IndexOptions
	10.5.44. AddIconByEncoding
	10.5.45. AddIconByType
	10.5.46. AddIcon
	10.5.47. DefaultIcon
	10.5.48. AddDescription
	10.5.49. ReadmeName
	10.5.50. HeaderName
	10.5.51. IndexIgnore
	10.5.52. AddEncoding
	10.5.53. AddLanguage
	10.5.54. LanguagePriority
	10.5.55. AddType
	10.5.56. AddHandler
	10.5.57. Action
	10.5.58. ErrorDocument
	10.5.59. BrowserMatch
	10.5.60. Location
	10.5.61. ProxyRequests
	10.5.62. Proxy
	10.5.63. Cache Directives
	10.5.64. NameVirtualHost
	10.5.65. VirtualHost
	10.5.66. Configuration Directives for SSL
	10.5.66.1. SetEnvIf

	10.6. Default Modules
	10.7. Adding Modules
	10.8. Virtual Hosts
	10.8.1. Setting Up Virtual Hosts
	10.8.2. The Secure Web Server Virtual Host

	10.9. Additional Resources
	10.9.1. Useful Websites
	10.9.2. Related Books

	Chapter 11.
	Email
	11.1. Email Protocols
	11.1.1. Mail Transport Protocols
	11.1.1.1. SMTP

	11.1.2. Mail Access Protocols
	11.1.2.1. POP
	11.1.2.2. IMAP

	11.2. Email Program Classifications
	11.2.1. Mail Transfer Agent
	11.2.2. Mail Delivery Agent
	11.2.3. Mail User Agent

	11.3. Mail Transport Agents
	11.3.1. Sendmail
	11.3.1.1. Purpose and Limitations
	11.3.1.2. The Default Sendmail Installation
	11.3.1.3. Common Sendmail Configuration Changes
	11.3.1.4. Masquerading
	11.3.1.5. Stopping Spam
	11.3.1.6. Using Sendmail with LDAP

	11.3.2. Postfix
	11.3.2.1. The Default Postfix Installation
	11.3.2.2. Basic Postfix Configuration

	11.3.3. Fetchmail
	11.3.3.1. Fetchmail Configuration Options
	11.3.3.2. Global Options
	11.3.3.3. Server Options
	11.3.3.4. User Options
	11.3.3.5. Fetchmail Command Options
	11.3.3.6. Informational or Debugging Options
	11.3.3.7. Special Options

	11.4. Mail Delivery Agents
	11.4.1. Procmail Configuration
	11.4.2. Procmail Recipes
	11.4.2.1. Delivering vs. NonDelivering Recipes
	11.4.2.2. Flags
	11.4.2.3. Specifying a Local Lockfile
	11.4.2.4. Special Conditions and Actions
	11.4.2.5. Recipe Examples
	11.4.2.6. Spam Filters

	11.5. Mail User Agents
	11.5.1. Securing Communication
	11.5.1.1. Secure Email Clients
	11.5.1.2. Securing Email Client Communications

	11.6. Additional Resources
	11.6.1. Installed Documentation
	11.6.2. Useful Websites
	11.6.3. Related Books

	Chapter 12.
	Berkeley Internet Name Domain (BIND)
	12.1. Introduction to DNS
	12.1.1. Nameserver Zones
	12.1.2. Nameserver Types
	12.1.3. BIND as a Nameserver

	12.2. /etc/named.conf
	12.2.1. Common Statement Types
	12.2.1.1. acl Statement
	12.2.1.2. include Statement
	12.2.1.3. options Statement
	12.2.1.4. zone Statement
	12.2.1.5. Sample zone Statements

	12.2.2. Other Statement Types
	12.2.3. Comment Tags

	12.3. Zone Files
	12.3.1. Zone File Directives
	12.3.2. Zone File Resource Records
	12.3.3. Example Zone File
	12.3.4. Reverse Name Resolution Zone Files

	12.4. Using rndc
	12.4.1. Configuring /etc/named.conf
	12.4.2. Configuring /etc/rndc.conf
	12.4.3. Command Line Options

	12.5. Advanced Features of BIND
	12.5.1. DNS Protocol Enhancements
	12.5.2. Multiple Views
	12.5.3. Security
	12.5.4. IP version 6

	12.6. Common Mistakes to Avoid
	12.7. Additional Resources
	12.7.1. Installed Documentation
	12.7.2. Useful Websites
	12.7.3. Related Books

	Chapter 13.
	Lightweight Directory Access Protocol (LDAP)
	13.1. Why Use LDAP?
	13.1.1. OpenLDAP Features

	13.2. LDAP Terminology
	13.3. OpenLDAP Daemons and Utilities
	13.3.1. NSS, PAM, and LDAP
	13.3.2. PHP4, LDAP, and the Apache HTTP Server
	13.3.3. LDAP Client Applications

	13.4. OpenLDAP Configuration Files
	13.5. The /etc/openldap/schema/ Directory
	13.6. OpenLDAP Setup Overview
	13.6.1. Editing /etc/openldap/slapd.conf

	13.7. Configuring a System to Authenticate Using OpenLDAP
	13.7.1. PAM and LDAP
	13.7.2. Migrating Old Authentication Information to LDAP Format

	13.8. Migrating Directories from Earlier Releases
	13.9. Additional Resources
	13.9.1. Installed Documentation
	13.9.2. Useful Websites
	13.9.3. Related Books

	Chapter 14.
	Samba
	14.1. Introduction to Samba
	14.1.1. Samba Features

	14.2. Samba Daemons and Related Services
	14.2.1. Daemon Overview
	14.2.1.1. The smbd daemon
	14.2.1.2. The nmbd daemon
	14.2.1.3. The winbindd daemon

	14.2.2. Starting and Stopping Samba

	14.3. Samba Server Types and the smb.conf File
	14.3.1. Standalone Server
	14.3.1.1. Anonymous ReadOnly
	14.3.1.2. Anonymous Read/Write
	14.3.1.3. Anonymous Print Server
	14.3.1.4. Secure Read/Write File and Print Server

	14.3.2. Domain Member Server
	14.3.2.1. Active Directory Domain Member Server
	14.3.2.2. Windows NT4based Domain Member Server

	14.3.3. Domain Controller
	14.3.3.1. Primary Domain Controller (PDC) using tdbsam
	14.3.3.2. Primary Domain Controller (PDC) using LDAP
	14.3.3.3. Backup Domain Controller (BDC) using LDAP
	14.3.3.4. Primary Domain Controller (PDC) with Active Directory

	14.4. Samba Security Modes
	14.4.1. UserLevel Security
	14.4.2. ShareLevel Security
	14.4.3. Domain Security Mode (UserLevel Security)
	14.4.4. Active Directory Security Mode (UserLevel Security)
	14.4.5. Server Security Mode (UserLevel Security)

	14.5. Samba Account Information Databases
	14.5.1. Backward Compatible Backends
	14.5.2. New Backends

	14.6. Samba Network Browsing
	14.6.1. Workgroup Browsing
	14.6.2. Domain Browsing
	14.6.3. WINS (Windows Internetworking Name Server)

	14.7. Samba with CUPS Printing Support
	14.7.1. Simple smb.conf Settings

	14.8. Samba Distribution Programs
	14.8.1. findsmb
	14.8.2. makesmbcodepage
	14.8.3. makeunicodemap
	14.8.4. net
	14.8.5. nmblookup
	14.8.6. pdbedit
	14.8.7. rpcclient
	14.8.8. smbcacls
	14.8.9. smbclient
	14.8.10. smbcontrol
	14.8.11. smbgroupedit
	14.8.12. smbmount
	14.8.13. smbpasswd
	14.8.14. smbspool
	14.8.15. smbstatus
	14.8.16. smbtar
	14.8.17. testparm
	14.8.18. testprns
	14.8.19. wbinfo

	14.9. Additional Resources
	14.9.1. Installed Documentation
	14.9.2. Red Hat Documentation
	14.9.3. Related Books
	14.9.4. Useful Websites

	Chapter 15.
	FTP
	15.1. The File Transport Protocol
	15.1.1. Multiple Ports, Multiple Modes

	15.2. FTP Servers
	15.2.1. vsftpd

	15.3. Files Installed with vsftpd
	15.4. Starting and Stopping vsftpd
	15.4.1. Starting Multiple Copies of vsftpd

	15.5. vsftpd Configuration Options
	15.5.1. Daemon Options
	15.5.2. Log In Options and Access Controls
	15.5.3. Anonymous User Options
	15.5.4. Local User Options
	15.5.5. Directory Options
	15.5.6. File Transfer Options
	15.5.7. Logging Options
	15.5.8. Network Options

	15.6. Additional Resources
	15.6.1. Installed Documentation
	15.6.2. Useful Websites
	15.6.3. Related Books

	III. Security Reference
	Table of Contents
	Chapter 16.
	Pluggable Authentication Modules (PAM)
	16.1. Advantages of PAM
	16.2. PAM Configuration Files
	16.2.1. PAM Service Files

	16.3. PAM Configuration File Format
	16.3.1. Module Interface
	16.3.1.1. Stacking Module Interfaces

	16.3.2. Control Flag
	16.3.3. Module Name
	16.3.4. Module Arguments

	16.4. Sample PAM Configuration Files
	16.5. Creating PAM Modules
	16.6. PAM and Administrative Credential Caching
	16.6.1. Removing the Timestamp File
	16.6.2. Common pamtimestamp Directives

	16.7. PAM and Device Ownership
	16.7.1. Device Ownership
	16.7.2. Application Access

	16.8. Additional Resources
	16.8.1. Installed Documentation
	16.8.2. Useful Websites

	Chapter 17.
	TCP Wrappers and xinetd
	17.1. TCP Wrappers
	17.1.1. Advantages of TCP Wrappers

	17.2. TCP Wrappers Configuration Files
	17.2.1. Formatting Access Rules
	17.2.1.1. Wildcards
	17.2.1.2. Patterns
	17.2.1.3. Portmap and TCP Wrappers
	17.2.1.4. Operators

	17.2.2. Option Fields
	17.2.2.1. Logging
	17.2.2.2. Access Control
	17.2.2.3. Shell Commands
	17.2.2.4. Expansions

	17.3. xinetd
	17.4. xinetd Configuration Files
	17.4.1. The /etc/xinetd.conf File
	17.4.2. The /etc/xinetd.d/ Directory
	17.4.3. Altering xinetd Configuration Files
	17.4.3.1. Logging Options
	17.4.3.2. Access Control Options
	17.4.3.3. Binding and Redirection Options
	17.4.3.4. Resource Management Options

	17.5. Additional Resources
	17.5.1. Installed Documentation
	17.5.2. Useful Websites
	17.5.3. Related Books

	Chapter 18.
	iptables
	18.1. Packet Filtering
	18.2. Differences between iptables and ipchains
	18.3. Options Used within iptables Commands
	18.3.1. Structure of iptables Options
	18.3.2. Command Options
	18.3.3. iptables Parameter Options
	18.3.4. iptables Match Options
	18.3.4.1. TCP Protocol
	18.3.4.2. UDP Protocol
	18.3.4.3. ICMP Protocol
	18.3.4.4. Additional Match Option Modules

	18.3.5. Target Options
	18.3.6. Listing Options

	18.4. Saving iptables Rules
	18.5. iptables Control Scripts
	18.5.1. iptables Control Scripts Configuration File

	18.6. ip6tables and IPv6
	18.7. Additional Resources
	18.7.1. Installed Documentation
	18.7.2. Useful Websites

	Chapter 19.
	Kerberos
	19.1. What is Kerberos?
	19.1.1. Advantages of Kerberos
	19.1.2. Disadvantages of Kerberos

	19.2. Kerberos Terminology
	19.3. How Kerberos Works
	19.4. Kerberos and PAM
	19.5. Configuring a Kerberos 5 Server
	19.6. Configuring a Kerberos 5 Client
	19.7. Additional Resources
	19.7.1. Installed Documentation
	19.7.2. Useful Websites

	Chapter 20.
	SSH Protocol
	20.1. Features of SSH
	20.1.1. Why Use SSH?

	20.2. SSH Protocol Versions
	20.3. Event Sequence of an SSH Connection
	20.3.1. Transport Layer
	20.3.2. Authentication
	20.3.3. Channels

	20.4. OpenSSH Configuration Files
	20.5. More Than a Secure Shell
	20.5.1. X11 Forwarding
	20.5.2. Port Forwarding

	20.6. Requiring SSH for Remote Connections
	20.7. Additional Resources
	20.7.1. Installed Documentation
	20.7.2. Useful Websites
	20.7.3. Related Books

	Chapter 21.
	SELinux
	21.1. Introduction to SELinux
	21.2. Files Related to SELinux
	21.2.1. The /selinux/ PseudoFile System
	21.2.2. SELinux Configuration Files
	21.2.2.1. The /etc/sysconfig/selinux Configuration File
	21.2.2.2. The /etc/selinux/ Directory

	21.2.3. SELinux Utilities

	21.3. Additional Resources
	21.3.1. Installed Documentation
	21.3.2. Red Hat Documentation
	21.3.3. Useful Websites

	IV. Appendixes
	Table of Contents
	Appendix A.
	General Parameters and Modules
	A.1. Specifying Module Parameters
	A.2. SCSI parameters
	A.3. Ethernet Parameters
	A.3.1. Using Multiple Ethernet Cards
	A.3.2. The Channel Bonding Module
	A.3.2.1. bonding Module Directives

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	
	Colophon

