
Handling shape�les in the spatstat package

Adrian Baddeley, Rolf Turner and Ege Rubak

2023-01-28
spatstat version 3.0-3

This vignette explains how to read data into the spatstat package from �les in the popular

`shape�le' format.

This vignette is part of the documentation included in spatstat version 3.0-3. The information

applies to spatstat versions 1.36-0 and above.

1 Shape�les

A shape�le represents a list of spatial objects � a list of points, a list of lines, or a list of polygonal

regions � and each object in the list may have additional variables attached to it.

A dataset stored in shape�le format is actually stored in a collection of text �les, for example

mydata.shp

mydata.prj

mydata.sbn

mydata.dbf

which all have the same base name mydata but di�erent �le extensions. To refer to this collection you

will always use the �lename with the extension shp, for example mydata.shp.

2 Helper packages

We'll use two other packages to handle shape�le data.

The maptools package is designed speci�cally for handling �le formats for spatial data. It contains

facilities for reading and writing �les in shape�le format.1

The sp package supports a standard set of spatial data types in R. These standard data types can

be handled by many other packages, so it is useful to convert your spatial data into one of the data

types supported by sp.

3 Caveat about longitude-latitude coordinates

The shape�le format supports geographical coordinates, usually longitude-latitude coordinates, which

specify locations on the curved surface of the Earth. However, spatstat deals only with spatial data

on a �at two-dimensional plane.

1Some code in maptools is no longer maintained, and may give you a message recommending that you use the packages

rgdal and sf. However these packages are more di�cult to install than maptools because of their software requirements.

So we recommend that you try maptools �rst.

1



When shape�le data are converted into spatstat objects, longitude and latitude coordinates are

(currently) treated as x and y coordinates, so that the Earth's surface is e�ectively mapped to a

rectangle. This mapping distorts distances and areas.

If your study region is a small region of the Earth's surface (about 3 degrees, 180 nautical miles,

200 statute miles, 320 km across) then a reasonable approach is to use the latitude and longitude as

x and y coordinates, after multiplying the longitude coordinates by the cosine of the latitude of the

centre of the region. This will approximately preserve areas and distances. This calculation is a simple

example of a geographical projection and there are some much better projections available. It may be

wise to use another package to perform the appropriate projection for you, and then to convert the

projected data into spatstat objects.

If your study region is a large part of the sphere, then your data may not be amenable to the

techniques provided by spatstat because the geometry is fundamentally di�erent. Please consider the

extension package spatstat.sphere.

4 How to read shape�les into spatstat

To read shape�le data into spatstat, you follow two steps:

1. using the facilities of maptools, read the shape�les and store the data in one of the standard

formats supported by sp.

2. convert the sp data type into one of the data types supported by spatstat.

4.1 Read shape�les using maptools

Here's how to read shape�le data.

1. ensure that the package maptools is installed. You will need version 0.7-16 or later.

2. start R and load the package:

> library(maptools)

3. read the shape�le into an object in the sp package using readShapeSpatial, for example

> x <- readShapeSpatial("mydata.shp")

In recent versions of maptools you may get a warning, saying that this code is no longer sup-

ported, and recommending the packages rgdal and sf. As far as we know, this warning is

premature, as the code still works �ne!

4. To �nd out what kind of spatial objects are represented by the dataset, inspect its class:

> class(x)

The class may be either SpatialPoints indicating a point pattern, SpatialLines indicating

a list of polygonal lines, or SpatialPolygons indicating a list of polygons. It may also be

SpatialPointsDataFrame, SpatialLinesDataFrame or SpatialPolygonsDataFrame indicating

that, in addition to the spatial objects, there is a data frame of additional variables. The classes

SpatialPixelsDataFrame and SpatialGridDataFrame represent pixel image data.

Here are some examples, using the example shape�les supplied in the maptools package itself.

2



> setwd(system.file("shapes", package="maptools"))

> baltim <- readShapeSpatial("baltim.shp")

> columbus <- readShapeSpatial("columbus.shp")

> fylk <- readShapeSpatial("fylk-val.shp")

> class(baltim)

[1] "SpatialPointsDataFrame"

> class(columbus)

[1] "SpatialPolygonsDataFrame"

> class(fylk)

[1] "SpatialLinesDataFrame"

4.2 Convert data to spatstat format

To convert the dataset to an object in the spatstat package, the procedure depends on the type of

data, as explained below.

Both packages maptools and spatstat must be loaded in order to convert the data.

4.2.1 Objects of class SpatialPoints

An object x of class SpatialPoints represents a spatial point pattern. Use as(x, "ppp") or as.ppp(x)

to convert it to a spatial point pattern in spatstat.

(The conversion is performed by as.ppp.SpatialPoints, a function in maptools.)

The window for the point pattern will be taken from the bounding box of the points. You will

probably wish to change this window, usually by taking another dataset to provide the window in-

formation. Use [.ppp to change the window: if X is a point pattern object of class "ppp" and W is a

window object of class "owin", type

> X <- X[W]

4.2.2 Objects of class SpatialPointsDataFrame

An object x of class SpatialPointsDataFrame represents a pattern of points with additional variables

(`marks') attached to each point. It includes an object of class SpatialPoints giving the point

locations, and a data frame containing the additional variables attached to the points.

Use as(x, "ppp") or as.ppp(x) to convert an object x of class SpatialPointsDataFrame to a

spatial point pattern in spatstat. In this conversion, the data frame of additional variables in x will

become the marks of the point pattern z.

> y <- as(x, "ppp")

(The conversion is performed by as.ppp.SpatialPointsDataFrame, a function in maptools. So

the maptools and spatstat packages must be loaded in order for this to work.)

Before the conversion you can extract the data frame of auxiliary data by df <- x@data or

df <- slot(x, "data"). After the conversion you can extract these data by df <- marks(y).

For example:

> balt <- as(baltim, "ppp")

> bdata <- slot(baltim, "data")

3



4.2.3 Objects of class SpatialLines

A �line segment� is the straight line between two points in the plane.

In the spatstat package, an object of class psp (�planar segment pattern�) represents a pattern of

line segments, which may or may not be connected to each other (like matches which have fallen at

random on the ground).

In the sp package, an object of class SpatialLines represents a list of lists of connected curves,

each curve consisting of a sequence of straight line segments that are joined together (like several pieces

of a broken bicycle chain.)

So these two data types do not correspond exactly.

The list-of-lists hierarchy in a SpatialLines object is useful when representing internal divisions

in a country. For example, if USA is an object of class SpatialLines representing the borders of

the United States of America, then USA@lines might be a list of length 52, with USA@lines[[i]]

representing the borders of the i-th State. The borders of each State consist of several di�erent curved

lines. Thus USA@lines[[i]]@Lines[[j]] would represent the jth piece of the boundary of the i-th

State.

If x is an object of class SpatialLines, there are several things that you might want to do:

1. collect together all the line segments (all the segments that make up all the connected curves)

and store them as a single object of class psp.

To do this, use as(x, "psp") or as.psp(x) to convert it to a spatial line segment

pattern.

2. convert each connected curve to an object of class psp, keeping di�erent connected curves sepa-

rate.

To do this, type something like the following:

> out <- lapply(x@lines, function(z) { lapply(z@Lines, as.psp) })

(The conversion is performed by as.psp.SpatialLines, a function in maptools. So the maptools

and spatstat packages must be loaded in order for this to work.)

The result will be a list of lists of objects of class psp. Each one of these objects represents

a connected curve, although the spatstat package does not know that. The list structure will

re�ect the list structure of the original SpatialLines object x. If that's not what you want, then

use curvelist <- do.call("c", out) or

> curvegroup <- lapply(out, function(z) { do.call("superimpose", z)})

to collapse the list-of-lists-of-psp's into a list-of-psp's. In the �rst case, curvelist[[i]] is a

psp object representing the i-th connected curve. In the second case, curvegroup[[i]] is a psp

object containing all the line segments in the i-th group of connected curves (for example the

i-th State in the USA example).

The window for the spatial line segment pattern can be speci�ed as an argument window to the

function as.psp.

(The conversion is performed by as.psp.SpatialLines or as.psp.Lines, which are functions in

maptools.)

4



4.2.4 Objects of class SpatialLinesDataFrame

An object x of class SpatialLinesDataFrame is a SpatialLines object with additional data. The

additional data is stored as a data frame x@data with one row for each entry in x@lines, that is, one

row for each group of connected curves.

In the spatstat package, an object of class psp (representing a collection of line segments) may

have a data frame of marks. Note that each line segment in a psp object may have di�erent mark

values.

If x is an object of class SpatialLinesDataFrame, there are two things that you might want to do:

1. collect together all the line segments that make up all the connected lines, and store them as a

single object of class psp.

To do this, use as(x, "psp") or as.psp(x) to convert it to a marked spatial line

segment pattern.

2. keep each connected curve separate, and convert each connected curve to an object of class psp.

To do this, type something like the following:

> out <- lapply(x@lines, function(z) { lapply(z@Lines, as.psp) })

> dat <- x@data

> for(i in seq(nrow(dat)))

+ out[[i]] <- lapply(out[[i]], "marks<-", value=dat[i, , drop=FALSE])

The result is a list-of-lists-of-psp's. See the previous subsection for explanation on how to change

this using c() or superimposePSP.

(The conversion is performed by as.psp.SpatialLines, a function in maptools. So the maptools

and spatstat packages must be loaded in order for this to work.)

In either case, the mark variables attached to a particular group of connected lines in the SpatialLinesDataFrame

object, will be duplicated and attached to each line segment in the resulting psp object.

4.2.5 Objects of class SpatialPolygons

First, so that we don't go completely crazy, let's introduce some terminology. A polygon is a closed

curve that is composed of straight line segments. You can draw a polygon without lifting your pen

from the paper.

polygon

5



A polygonal region is a region in space whose boundary is composed of straight line segments.

A polygonal region may consist of several unconnected pieces, and each piece may have holes. The

boundary of a polygonal region consists of one or more polygons. To draw the boundary of a polygonal

region, you may need to lift and drop the pen several times.

polygonal region

An object of class owin in spatstat represents a polygonal region. It is a region of space that is

delimited by boundaries made of lines.

An object x of class SpatialPolygons represents a list of polygonal regions. For example, a

single object of class SpatialPolygons could store information about every State in the United States

of America (or the United States of Malaysia). Each State would be a separate polygonal region (and

it might contain holes such as lakes).

There are two things that you might want to do with an object of class SpatialPolygons:

1. combine all the polygonal regions together into a single polygonal region, and convert this to a

single object of class owin.

For example, you could combine all the States of the USA together and obtain a single

object that represents the territory of the USA.

To do this, use as(x, "owin") or as.owin(x). The result is a single window (object

of class "owin") in the spatstat package.

2. keep the di�erent polygonal regions separate; convert each one of the polygonal regions to an

object of class owin.

For example, you could keep the States of the USA separate, and convert each State

to an object of class owin.

To do this, type the following:

> regions <- slot(x, "polygons")

> regions <- lapply(regions, function(x) { SpatialPolygons(list(x)) })

> windows <- lapply(regions, as.owin)

The result is a list of objects of class owin. Often it would make sense to convert this to a

tessellation object, by typing

> te <- tess(tiles=windows)

6



(The conversion is performed by as.owin.SpatialPolygons, a function in maptools. So the

maptools and spatstat packages must be loaded in order for this to work.)

The following is di�erent from what happened in previous versions of spatstat (prior

to version 1.36-0.)

During the conversion process, the geometry of the polygons will be automatically �repaired� if

needed. Polygon data from shape�les often contain geometrical inconsistencies such as self-intersecting

boundaries and overlapping pieces. For example, these can arise from small errors in curve-tracing.

Geometrical inconsistencies are tolerated in an object of class SpatialPolygons which is a list of

lists of polygonal curves. However, they are not tolerated in an object of class owin, because an

owin must specify a well-de�ned region of space. These data inconsistencies must be repaired to

prevent technical problems. Spatstat uses polygon-clipping code to automatically convert polygo-

nal lines into valid polygon boundaries. The repair process changes the number of vertices in each

polygon, and the number of polygons (if you chose option 1). To disable the repair process, set

spatstat.options(fixpolygons=FALSE).

4.2.6 Objects of class SpatialPolygonsDataFrame

What a mouthful!

An object x of class SpatialPolygonsDataFrame represents a list of polygonal regions, with ad-

ditional variables attached to each region. It includes an object of class SpatialPolygons giving the

spatial regions, and a data frame containing the additional variables attached to the regions. The

regions are extracted by

> y <- as(x, "SpatialPolygons")

and you then proceed as above to convert the curves to spatstat format.

The data frame of auxiliary data is extracted by df <- x@data or df <- slot(x, "data").

For example:

> cp <- as(columbus, "SpatialPolygons")

> cregions <- slot(cp, "polygons")

> cregions <- lapply(cregions, function(x) { SpatialPolygons(list(x)) })

> cwindows <- lapply(cregions, as.owin)

There is currently no facility in spatstat for attaching marks to an owin object directly.

However, spatstat supports objects called hyperframes, which are like data frames except that

the entries can be any type of object. Thus we can represent the columbus data in spatstat as follows:

> ch <- hyperframe(window=cwindows)

> ch <- cbind.hyperframe(ch, columbus@data)

Then ch is a hyperframe containing a column of owin objects followed by the columns of auxiliary

data.

4.2.7 Objects of class SpatialGridDataFrame and SpatialPixelsDataFrame

An object x of class SpatialGridDataFrame represents a pixel image on a rectangular grid. It includes

a SpatialGrid object slot(x, "grid") de�ning the full rectangular grid of pixels, and a data frame

slot(x, "data") containing the pixel values (which may include NA values).

The command as(x, "im") converts x to a pixel image of class "im", taking the pixel values from

the �rst column of the data frame. If the data frame has multiple columns, these have to be converted

to separate pixel images in spatstat. For example

7



> y <- as(x, "im")

> ylist <- lapply(slot(x, "data"), function(z, y) { y[,] <- z; y }, y=y)

An object x of class SpatialPixelsDataFrame represents a subset of a pixel image. To con-

vert this to a spatstat object, it should �rst be converted to a SpatialGridDataFrame by as(x,

"SpatialGridDataFrame"), then handled as described above.

8


	Shapefiles
	Helper packages
	Caveat about longitude-latitude coordinates
	How to read shapefiles into spatstat
	Read shapefiles using maptools
	Convert data to spatstat format
	Objects of class SpatialPoints
	Objects of class SpatialPointsDataFrame 
	Objects of class SpatialLines
	Objects of class SpatialLinesDataFrame
	Objects of class SpatialPolygons
	Objects of class SpatialPolygonsDataFrame
	Objects of class SpatialGridDataFrame and SpatialPixelsDataFrame



